6,406 research outputs found

    Ecology of the non-native snail Sinotaia cf quadrata (Caenogastropoda: Viviparidae). A study in a lowland stream of South America with different water qualities

    Get PDF
    Sinotaia quadrata is a snail native from Asia recorded for the first time in South America in 2009 in central Argentina. In 2015, this species was also found in a lowland stream with different water qualities. Our aims were to contribute to the knowledge of its population ecology and to compare the individuals from the two locations anatomically. Snails were searched at 6 sites, where physicochemical and hydraulic parameters were measured. Biological samples were also taken at two sites (S3 and S4) to study the population traits of S. cf quadrata (density, size structure, fecundity and sex ratio) and to assess the water quality through macroinvertebrates' biological indices (richness, diversity and IBPamp). Physicochemical and biological parameters allowed us classifying sites as "moderately polluted" (S3) and "heavily polluted" (S4). At S4, the population showed a lower density, larger individuals, higher fecundity and a scarce representation of young snails. The differences observed in the radula and mantle border of snails from the two geographical regions might be attributed to environmental differences. We conclude that this species is tolerant to a wide range of environmental variables which, along with its high fecundity and morphological plasticity, could allow this species to colonize neighbor streams.Fil: Ferreira, Ana Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Paz, Laura Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Rumi Macchi Z., Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Ocon, Carolina Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Altieri, Paula Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Rodrigues Capitulo, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; Argentin

    Group Leaders Optimization Algorithm

    Full text link
    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multidimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speed-up over the classical counterpart

    Geostatistical analysis of surface microtopography on tilled soil surfaces

    Get PDF
    [Abstract] Depressions at the soil surface influence temporal water storage and hence runoff generation. Surface microtopography of tilled soils is subject to spatial and temporal changes. The objective of this study was to evaluate whether elevation data with different resolutions have a comparable patters of spatial dependence. Point elevation measurements were taken on 25 tilled soil surfaces after mouldboard plough across a range of cumulative precipitation and roughness. Height was measured with a pinmeter. The grid spacing of the experimental surfaces was 2 cm and sample density was diminished by leaning point out to obtain 4 cm x 4 cm and 6 cm x 2 cm grids. The spatial structure of the studied surfaces was modelled by spherical and exponential semivariograms with no o very small nugget components. Changing sample grid spacing didn’t influence the adjusted semivariogram type, but could originate small modifications of the sill and/or range values

    Modulated Entanglement Evolution Via Correlated Noises

    Full text link
    We study entanglement dynamics in the presence of correlated environmental noises. Specifically, we investigate the quantum entanglement dynamics of two spins in the presence of correlated classical white noises, deriving Markov master equation and obtaining explicit solutions for several interesting classes of initial states including Bell states and X form density matrices. We show how entanglement can be enhanced or reduced by the correlation between the two participating noises.Comment: 9 pages, 4 figures. To be published in Quantum Information Processing, special issue on Quantum Decoherence and Entanglemen

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page

    Non-factorizable Contributions to BππB \to \pi\pi Decays

    Full text link
    We investigate to what extent the experimental information on BππB \to \pi\pi branching fractions and CP asymmetries can be used to better understand the QCD dynamics in these decays. For this purpose we decompose the independent isospin amplitudes into factorizable and non-factorizable contributions. The former can be estimated within the framework of QCD factorization for exclusive BB decays. The latter vanish in the heavy-quark limit, mbm_b \to \infty, and are treated as unknown hadronic parameters. We discuss at some length in which way the non-factorizable contributions are treated in different theoretical and phenomenological frameworks. We point out the potential differences between the phenomenological treatment of power-corrections in the ``BBNS approach'', and the appearance of power -suppressed operators in soft-collinear effective theory (SCET). On that basis we define a handful of different (but generic) scenarios where the non-factorizable part of isospin amplitudes is parametrized in terms of three or four unknowns, which can be constrained by data. We also give some short discussion on the implications of our analysis for BπKB \to \pi K decays. In particular, since non-factorizable QCD effects in BππB \to \pi \pi may be large, we cannot exclude sizeable non-factorizable effects, which violate SU(3)FSU(3)_F flavour symmetry, or even isospin symmetry (via long-distance QED effects). This may help to explain certain puzzles in connection with isospin-violating observables in BπKB \to \pi K decays.Comment: published version, minor correction

    Algorithmic Analysis of Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs

    Full text link
    In this paper, we consider termination of probabilistic programs with real-valued variables. The questions concerned are: 1. qualitative ones that ask (i) whether the program terminates with probability 1 (almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); 2. quantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) to compute a bound B such that the probability to terminate after B steps decreases exponentially (concentration problem). To solve these questions, we utilize the notion of ranking supermartingales which is a powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmic synthesis of linear ranking-supermartingales over affine probabilistic programs (APP's) with both angelic and demonic non-determinism. An important subclass of APP's is LRAPP which is defined as the class of all APP's over which a linear ranking-supermartingale exists. Our main contributions are as follows. Firstly, we show that the membership problem of LRAPP (i) can be decided in polynomial time for APP's with at most demonic non-determinism, and (ii) is NP-hard and in PSPACE for APP's with angelic non-determinism; moreover, the NP-hardness result holds already for APP's without probability and demonic non-determinism. Secondly, we show that the concentration problem over LRAPP can be solved in the same complexity as for the membership problem of LRAPP. Finally, we show that the expectation problem over LRAPP can be solved in 2EXPTIME and is PSPACE-hard even for APP's without probability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate the effectiveness of our approach to answer the qualitative and quantitative questions over APP's with at most demonic non-determinism.Comment: 24 pages, full version to the conference paper on POPL 201

    Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays

    Full text link
    During sleep and awake rest, the hippocampus replays sequences of place cells that have been activated during prior experiences. These have been interpreted as a memory consolidation process, but recent results suggest a possible interpretation in terms of reinforcement learning. The Dyna reinforcement learning algorithms use off-line replays to improve learning. Under limited replay budget, a prioritized sweeping approach, which requires a model of the transitions to the predecessors, can be used to improve performance. We investigate whether such algorithms can explain the experimentally observed replays. We propose a neural network version of prioritized sweeping Q-learning, for which we developed a growing multiple expert algorithm, able to cope with multiple predecessors. The resulting architecture is able to improve the learning of simulated agents confronted to a navigation task. We predict that, in animals, learning the world model should occur during rest periods, and that the corresponding replays should be shuffled.Comment: Living Machines 2018 (Paris, France

    Quantum entanglement and disentanglement of multi-atom systems

    Full text link
    We present a review of recent research on quantum entanglement, with special emphasis on entanglement between single atoms, processing of an encoded entanglement and its temporary evolution. Analysis based on the density matrix formalism are described. We give a simple description of the entangling procedure and explore the role of the environment in creation of entanglement and in disentanglement of atomic systems. A particular process we will focus on is spontaneous emission, usually recognized as an irreversible loss of information and entanglement encoded in the internal states of the system. We illustrate some certain circumstances where this irreversible process can in fact induce entanglement between separated systems. We also show how spontaneous emission reveals a competition between the Bell states of a two qubit system that leads to the recently discovered "sudden" features in the temporal evolution of entanglement. An another problem illustrated in details is a deterministic preparation of atoms and atomic ensembles in long-lived stationary squeezed states and entangled cluster states. We then determine how to trigger the evolution of the stable entanglement and also address the issue of a steered evolution of entanglement between desired pairs of qubits that can be achieved simply by varying the parameters of a given system.Comment: Review articl
    corecore