45 research outputs found

    Can management intensity be more important than environmental factors? A case study along an extreme elevation gradient from central Italian cereal fields

    Get PDF
    This paper aims to assess the importance of environmental and management factors determining the weed species composition along a strong elevation gradient. A total of 76 cereal fields (39 low input and 37 intensively managed) were sampled along an elevation gradient in central Italy. Explanatory variables were recorded for each field to elucidate the role of large-scale spatial trends, of site-specific abiotic environmental conditions and of field management characters. Redundancy analysis was used to assess the relative importance of each environmental variable in explaining the variation in species composition. Our results indicate that variation in weed species composition is strongly determined by altitude, mean annual precipitation, mean annual temperature and also by soil characteristics. However, the level of intensification proved to be the most influential variable. There was a significant difference in species richness and composition between low-input and intensively managed fields. Intensification leads to considerable species loss at both lower and higher elevations. Low-input fields had 296 species in total, while intensively managed fields had only 196

    European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials

    Get PDF
    Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate-human-land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP). We describe how vegetation cover has been quantified from pollen records at a 1 degrees x 1 degrees spatial scale using the "Regional Estimates of VEgetation Abundance from Large Sites" (REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean-Black Sea-Caspian corridor (30-75 degrees N, 25 degrees W-50 degrees E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (>= 2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022)

    Intravesical Treatments of Bladder Cancer: Review

    Get PDF
    For bladder cancer, intravesical chemo/immunotherapy is widely used as adjuvant therapies after surgical transurethal resection, while systemic therapy is typically reserved for higher stage, muscle-invading, or metastatic diseases. The goal of intravesical therapy is to eradicate existing or residual tumors through direct cytoablation or immunostimulation. The unique properties of the urinary bladder render it a fertile ground for evaluating additional novel experimental approaches to regional therapy, including iontophoresis/electrophoresis, local hyperthermia, co-administration of permeation enhancers, bioadhesive carriers, magnetic-targeted particles and gene therapy. Furthermore, due to its unique anatomical properties, the drug concentration-time profiles in various layers of bladder tissues during and after intravesical therapy can be described by mathematical models comprised of drug disposition and transport kinetic parameters. The drug delivery data, in turn, can be combined with the effective drug exposure to infer treatment efficacy and thereby assists the selection of optimal regimens. To our knowledge, intravesical therapy of bladder cancer represents the first example where computational pharmacological approach was used to design, and successfully predicted the outcome of, a randomized phase III trial (using mitomycin C). This review summarizes the pharmacological principles and the current status of intravesical therapy, and the application of computation to optimize the drug delivery to target sites and the treatment efficacy

    Volcanic mega-eruptions may trigger major cholera outbreaks

    Full text link

    Volcanic mega-eruptions may trigger major cholera outbreaks

    No full text
    corecore