400 research outputs found

    On the dynamics of the Furuta pendulum

    Get PDF
    The Furuta pendulum, or rotational inverted pendulum, is a system found in many control labs. It provides a compact yet impressive platform for control demonstrations and draws the attention of the control community as a platform for the development of nonlinear control laws. Despite the popularity of the platform, there are very few papers which employ the correct dynamics and only one that derives the full system dynamics. In this paper, the full dynamics of the Furuta pendulum are derived using two methods: a Lagrangian formulation and an iterative Newton-Euler formulation. Approximations are made to the full dynamics which converge to the more commonly presented expressions. The system dynamics are then linearised using a Jacobian. To illustrate the influence the commonly neglected inertia terms have on the system dynamics, a brief example is offered.Benjamin Seth Cazzolato and Zebb Prim

    Cost-effectiveness of interventions for increasing the possession of functioning smoke alarms in households with pre-school children: a modelling study

    Get PDF
    Background The UK has one of the highest rates for deaths from fire and flames in children aged 0-14 years compared to other high income countries. Evidence shows that smoke alarms can reduce the risk of fire-related injury but little exists on their cost-effectiveness. We aimed to compare the cost effectiveness of different interventions for the uptake of 'functioning' smoke alarms and consequently for the prevention of fire-related injuries in children in the UK. Methods We carried out a decision model-based probabilistic cost-effectiveness analysis. We used a hypothetical population of newborns and evaluated the impact of living in a household with or without a functioning smoke alarm during the first 5 years of their life on overall lifetime costs and quality of life from a public health perspective. We compared seven interventions, ranging from usual care to more complex interventions comprising of education, free/low cost equipment giveaway, equipment fitting and/or home safety inspection. Results Education and free/low cost equipment was the most cost-effective intervention with an estimated incremental cost-effectiveness ratio of [pound sign]34,200 per QALY gained compared to usual care. This was reduced to approximately £4,500 per QALY gained when 1.8 children under the age of 5 were assumed per household. Conclusions Assessing cost-effectiveness, as well as effectiveness, is important in a public sector system operating under a fixed budget restraint. As highlighted in this study, the more effective interventions (in this case the more complex interventions) may not necessarily be the ones considered the most cost-effective

    Exogenous spatial precuing reliably modulates object processing but not object substitution masking

    Get PDF
    Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481–507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646–661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance

    Processing and analysis methods for transonic cavity flow

    Get PDF
    This paper focuses on the localisation of noise sources in transonic cavity flows. Beamforming is used to estimate the pressure fluctuations inside a resonant transonic cavity, showing the localisation of the main sources of noise using an acoustic array and also combining it with a mean flow-field. The influence of the microphone array position, density, and shape is investigated. The presented method models the noise propagation with simple assumptions that are easily applicable to wind tunnel testing and may help localise the noise sources from complex geometries without intrusive methods

    An experimental comparison of beamforming, time-reversal and near-field acoustic holography for aeroacoustic source localization

    Get PDF
    AIAA 2014-2917Aeroacoustic source localization is an important experimental tool that uses an array of microphones to locate and quantify aeroacoustic sources. Obtaining such information is the first step towards reducing noise emissions. One emerging method of aeroacoustic source localization is aeroacoustic time-reversal. With a unique blend of numerical simula- tion and experimental data, aeroacoustic time-reversal has the potential to provide superior source resolution and characterization performance over other microphone array processing techniques. This paper presents an experimental comparison of three different aeroacoustic source localization methods: aeroacoustic time-reversal, beamforming and near-field acous- tic holography. The source resolution performance of all three source localization methods is investigated via a wind tunnel experimental study using two line arrays of microphones for the test case of a circular cylinder in low Mach number flow. The experimental results show that all three source localization methods are able to satisfactorily locate the cylinder noise source at the aeolian tone frequency to within λ/6. In addition, information about the directivity characteristics of the noise source are obtained with aeroacoustic time-reversal and beamforming.Zebb Prime , Akhilesh Mimani, Danielle J. Moreau and Con J. Doola

    Protein adsorption on preadsorbed polyampholytic monolayers

    Full text link
    The adsorption behaviour of five different globular proteins on pure silicon substrates and on preadsorbed polyampholytic monolayers has been investigated as a function of protein concentration. The prelayers were prepared by adsorption of the ampholytic diblock copolymer poly(methacrylic acid)-block-poly ((dimethylamino)ethyl methacrylate) (PMAA-b-PDMAEMA). This polyampholyte adsorbs in densely packed micelles directly from aqueous solution. Ellipsometry was used to determine the amount of adsorbed polyampholyte and protein. While ATR-IR spectroscopy gives information about the adsorption and desorption behaviour of the preadsorbed polyampholytic layer, the lateral structures of the dried films were investigated by scanning force microscopy (SFM). The amount of protein adsorbed was found to be strongly influenced by the preadsorbed polyampholyte compared to the adsorption on the pure silicon substrates. No displacement of the polyampholyte by the proteins was detected. In most cases the protein adsorption was reduced by the preadsorbed polyampholytic layer. The observed trends are explained by the change in electrostatic and hydrophilic characteristics of the substrates. Furthermore, the entropy of adsorption has to be taken into account.Peer reviewe

    Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction

    Get PDF
    Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-contentmicroscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells

    Flow modelling and noise generation of interacting prisms

    Get PDF
    AIAA 2014-3287Noise generation is a signi cant issue for High-Speed Trains, HSTs, and as speeds in- crease aerodynamically generated noise becomes the dominant noise source. In this article, the e ect of nose shape, carriage separation and yaw angle on the aerodynamics and noise generation are analysed using two prisms, representing a HST model. The aerodynamics are modelled using Computation Fluid Dynamics, CFD, and the ow velocity and turbu- lence intensity in various positions in the wake are compared with experimental hotwire data measured in the Anechoic Wind Tunnel, AWT, at The University of Adelaide, with good agreement. Finally, acoustic beamforming images of the noise generated by the in- teracting prisms measured in the AWT are presented. The acoustic results show that a blunt nose tends to increase noise at lower frequencies signi cantly, while increasing prism separation tends to increase noise over most frequencies, but most signi cantly at mid- frequencies, and increasing yaw angle increases noise across all frequencies. Beamforming results show that at lower frequencies, this noise tends to be generated at the leading and trailing edges, while at higher frequencies the noise tends to be generated in the carriage gap.Zebb Prime, Danielle J. Moreauy and Con J. Doola

    Photocatalytic Nanolithography of Self-Assembled Monolayers and Proteins

    Get PDF
    Self-assembled monolayers of alkylthiolates on gold and alkylsilanes on silicon dioxide have been patterned photocatalytically on sub-100 nm length-scales using both apertured near-field and apertureless methods. Apertured lithography was carried out by means of an argon ion laser (364 nm) coupled to cantilever-type near-field probes with a thin film of titania deposited over the aperture. Apertureless lithography was carried out with a helium–cadmium laser (325 nm) to excite titanium-coated, contact-mode atomic force microscope (AFM) probes. This latter approach is readily implementable on any commercial AFM system. Photodegradation occurred in both cases through the localized photocatalytic degradation of the monolayer. For alkanethiols, degradation of one thiol exposed the bare substrate, enabling refunctionalization of the bare gold by a second, contrasting thiol. For alkylsilanes, degradation of the adsorbate molecule provided a facile means for protein patterning. Lines were written in a protein-resistant film formed by the adsorption of oligo(ethylene glycol)-functionalized trichlorosilanes on glass, leading to the formation of sub-100 nm adhesive, aldehyde-functionalized regions. These were derivatized with aminobutylnitrilotriacetic acid, and complexed with Ni2+, enabling the binding of histidine-labeled green fluorescent protein, which yielded bright fluorescence from 70-nm-wide lines that could be imaged clearly in a confocal microscope
    corecore