12 research outputs found
ANT SPECIES DIVERSITY AND COMPOSITION AT MLINGANO MANGO ORCHARD IN TANZANIA
ABSTRACT: Ants are major decomposers and they are sensitive to any human influence in our environment. Presence or absence of ants in cropland habitat is resulted from alteration of forest habitat into cropland. Ant's species diversity in mango orchard was considered as an important biodiversity indicator due to alteration of the primary forest into cropland habitat. Ants were sampled from mango trees searching species of ants from tree bases to 2M high. Dental rolls with 10% sugar as attractant bait were also used to attract ground preference of ant species. Attractant bait was placed on a tree base for 30 minutes and thereafter inspected for data collection. This study has revealed that ant species composition in mango orchard varies according to cropping system. Dominance of species was Crematogaster followed by Pheidole megacephala and the least was Oecopyhlla longinoda ants. Comparison of species composition revealed that there were significant differences. Species with low representative individuals were considered as extinct or rare species. The intended study was carried out at Mlingano mango orchard with the aim to determine the ant's species diversity and composition. The results from this work will help in developing sustainable biodiversity conservation programmes as well as for future research
Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), in sub-Saharan African farming landscapes: a review of the factors determining abundance
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of smallholder households in Sub-Saharan Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors. In this review we critically assess the knowledge base relating to factors that may lead to high population densities of Sub-Saharan African (SSA) Bemisia tabaci species in cassava production landscapes of East Africa. We focus first on empirical studies that have examined biotic or abiotic factors that may lead to high populations. We then identify knowledge gaps that need to be filled to deliver long-term sustainable solutions to manage both the vectors and the viruses that they transmit. We found that whilst many hypotheses have been put forward to explain the increases in abundance witnessed since the early 1990s, there are little available published data and these tend to have been collected in a piecemeal manner. The most critical knowledge gaps identified were: (i) understanding how cassava cultivars and alternative host plants impact B. tabaci population dynamics and its natural enemies; (ii) the impact of natural enemies in terms of reducing the frequency of outbreaks and (iii) the use and management of insecticides to delay or avoid the development of resistance. In addition, there are several fundamental methodologies that need to be developed and deployed in East Africa to address some of the more challenging knowledge gaps
Bioecology of some key cashew insect pests and diseases in diverse habitats and landscapes in Tanzania
Integration of weaver ants <EM>Oecophylla longinoda</EM> into an IPM program for <EM>Bactrocera invadens</EM> (Diptera: Tephritidae) in Tanzania.
Multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolated from hospital sewage flowing through community sewage system and discharging into the Indian Ocean
Abstract Background Hospital sewage is a significant reservoir of antimicrobial-resistant pathogens and genes that pose a huge public health threat. In this study, we determined the occurrence of multidrug-resistant Escherichia coli and Klebsiella pneumoniae in sewage flowing from a referral hospital through the urban sewage system to the point of discharge in the Indian Ocean. Results A total of 400 sewage samples were collected, yielding 517 isolates. Of these, 32.3% (167/517) were from hospital sewage, while 67.7% (350/517) were from the community. E. coli was the most common isolate (44.5% (230/517)), followed by K. pneumoniae at 27.3% (141/517), and other gram-negative bacteria constituted 28.2% (146/517) of the isolates. Multidrug resistance (MDR) was seen in 80.9% (186/230) E. coli and 71.6% (101/141) K. pneumoniae. Of the MDR isolates, 27.2% (78/287) were resistant to four different classes of antibiotics, while 6.9% (20/287) exhibited resistance to eight classes. The most frequent MDR pattern was PEN/CEP/TET/QNL/SUL, seen in 14.2% (38/287) of the isolates. The isolation frequency of MDR E. coli and K. pneumoniae at different sampling sites was high, being 47.6% in hospital chambers, 62.0% in hospital ponds, 58.1% in the treated hospital wastewater, and 55.6% in the community stream draining into the Indian Ocean. Extended spectrum beta-lactamase production was observed in 40% (92/230) of E. coli and 36.2% (51/141) of K. pneumoniae isolates. Resistance to quinolones among E. coli was 54.8% (126/230) and was 39.7% in K. pneumoniae (56/141). Carbapenem resistance in E. coli was 39.6% (91/230), while among K. pneumoniae isolates was 32.6% (46/141). Conclusions We found high proportions of multidrug-resistant E. coli and K. pneumoniae in the wastewater flowing from the hospital through the community sewage system to the point where it enters the Indian Ocean. Biological treatment did not significantly reduce the proportion of resistant bacteria, posing a very serious public health threat. The release of these highly resistant pathogens into the Indian Ocean is of international concern
Farmers' perception of coconut mite damage and crop diversification alternatives in the coastal belt of Tanzania
Behaviour of Coconut Mites Preceding Take-off to Passive Aerial Dispersal
For more than three decades the coconut mite Aceria guerreronis Keifer is one of the most important pests of coconut palms and has recently spread to many coconut production areas worldwide. Colonization of coconut palms is thought to arise from mites dispersing aerially after take-off from other plants within the same plantation or other plantations. The underlying dispersal behaviour of the mite at take-off, in the airborne state and after landing is largely unknown and this is essential to understand how they spread from tree to tree. In this article we studied whether take-off to aerial dispersal of coconut mites is preceded by characteristic behaviour, whether there is a correlation between the body position preceding aerial dispersal and the direction of the wind, and whether the substrate (outer surface of coconut bracts or epidermis) and the wind speed matter to the decision to take-off. We found that take-off can sometimes be preceded by a raised body stance, but more frequently take-off occurs while the mite is walking or resting on its substrate. Coconut mites that become airborne assumed a body stance that had no relation to the wind direction. Take-off was suppressed on a substrate providing food to coconut mites, but occurred significantly more frequently on the outer surface of coconut bracts than on the surface of the fruit. For both substrates, take-off frequency increased with wind speed. We conclude that coconut mites have at least some degree of control over take-off for aerial dispersal and that there is as yet no reason to infer that a raised body stance is necessary to become airborne
