191 research outputs found
Potential applications of nanotechnology in thermochemical conversion of microalgal biomass
The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed
Chemiluminescence determination of surfactant Triton X-100 in environmental water with luminol-hydrogen peroxide system
<p>Abstract</p> <p>Background</p> <p>The rapid, simple determination of surfactants in environmental samples is essential because of the extensive use and its potential as contaminants. We describe a simple, rapid chemiluminescence method for the direct determination of the non-ionic surfactant Triton X-100 (polyethylene glycol tert-octylphenyl ether) in environmental water samples. The optimized experimental conditions were selected, and the mechanism of the Luminol-H<sub>2</sub>O<sub>2</sub>-Triton X-100 chemiluminesence system was also studied.</p> <p>Results</p> <p>The novel chemiluminescence method for the determination of non-ionic surfactant Triton X-100 was based on the phenomenon that Triton X-100 greatly enhanced the CL signal of the luminol-H<sub>2</sub>O<sub>2 </sub>system. The alkaline medium of luminol and the pH value obviously affected the results. Luminol concentration and hydrogen peroxide concentration also affected the results. The optimal conditions were: Na<sub>2</sub>CO<sub>3 </sub>being the medium, pH value 12.5, luminol concentration 1.0 × 10<sup>-4 </sup>mol L<sup>-1</sup>, H<sub>2</sub>O<sub>2 </sub>concentration 0.4 mol L<sup>-1</sup>. The possible mechanism was studied and proposed.</p> <p>Conclusion</p> <p>Under the optimal conditions, the standard curve was drawn up and quotas were evaluated. The linear range was 2 × 10<sup>-4 </sup>g·mL<sup>-1</sup>-4 × 10<sup>-2 </sup>g·mL<sup>-1 </sup>(w/v), and the detection limit was 3.97 × 10<sup>-5 </sup>g·mL<sup>-1 </sup>Triton X-100 (w/v). The relative standard deviation was less than 4.73% for 2 × 10<sup>-2 </sup>g·mL<sup>-1 </sup>(w/v) Triton X-100 (n = 7). This method has been applied to the determination of Triton X-100 in environmental water samples. The desirable recovery ratio was between 96%–102% and the relative standard deviation was 2.5%–3.3%. The luminescence mechanism was also discussed in detail based on the fluorescence spectrum and the kinetic curve, and demonstrated that Triton X-100-luminol-H<sub>2</sub>O<sub>2 </sub>was a rapid reaction.</p
Locked Nucleic Acid Pentamers as Universal PCR Primers for Genomic DNA Amplification
Background: Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can save a lot of time, cost and labor compared to traditional single reaction detection methods. However, the multiplexing method currently used requires precise handiwork and many complicated steps, making a new, simpler technique desirable. Oligonucleotides containing locked nucleic acid residues are an attractive tool because they have strong affinities for their complementary targets, they have been used to avoid dimer formation and mismatch hybridization and to enhance efficient priming. In this study, we aimed to investigate the use of locked nucleic acid pentamers for genomic DNA amplification and multiplex genotyping. Results: We designed locked nucleic acid pentamers as universal PCR primers for genomic DNA amplification. The locked nucleic acid pentamers were able to prime amplification of the selected sequences within the investigated genomes, and the resulting products were similar in length to those obtained by restriction digest. In Real Time PCR of genomic DNA from three bacterial species, locked nucleic acid pentamers showed high priming efficiencies. Data from bias tests demonstrated that locked nucleic acid pentamers have equal affinities for each of the six genes tested from the Klebsiella pneumoniae genome. Combined with suspension array genotyping, locked nucleic acid pentamer-based PCR amplification was able to identify a total of 15 strains, including 3 species of bacteria, by gene- and species-specific probes. Among the 32 specie
Synthesis of ZnO/Si Hierarchical Nanowire Arrays for Photocatalyst Application
ZnO/Si nanowire arrays with hierarchical architecture were synthesized by solution method with ZnO seed layer grown by atomic layer deposition and magnetron sputtering, respectively. The photocatalytic activity of the as-grown tree-like arrays was evaluated by the degradation of methylene blue under ultraviolet light at ambient temperature. The comparison of morphology, crystal structure, optical properties, and photocatalysis efficiency of the two samples in different seeding processes was conducted. It was found that the ZnO/Si nanowire arrays presented a larger surface area with better crystalline and more uniform ZnO branches on the whole sidewall of Si backbones for the seed layer by atomic layer deposition, which gained a strong light absorption as high as 98% in the ultraviolet and visible range. The samples were proven to have a potential use in photocatalyst, but suffered from photodissolution and memory effect. The mechanism of the photocatalysis was analyzed, and the stability and recycling ability were also evaluated and enhanced. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-016-1803-0) contains supplementary material, which is available to authorized users
The potato R locus codes for dihydroflavonol 4-reductase
The potato R locus is required for the production of red pelargonidin-based anthocyanin pigments in potato (Solanum tuberosum L.). Red color also requires tissue-specific regulatory genes, such as D (for expression in tuber skin) and F (expression in flowers). A related locus, P, is required for production of blue/purple anthocyanins; P is epistatic to R. We have previously reported that the dihydroflavonol 4-reductase gene (dfr) co-segregates with R. To test directly whether R corresponds to dfr, we placed the allele of dfr associated with red color under the control of the CaMV 35S promoter and introduced it into the potato cultivar Prince Hairy (genotype dddd rrrr P-), which has white tubers and pale blue flowers. Transgenic Prince Hairy tubers remained white, but flower color changed to purple. Three independent transgenic lines, as well as a vector-transformed line, were then crossed with the red-skinned variety Chieftain (genotype D-R-pppp), to establish populations that segregated for D, R, P, and the dfr transgene or empty vector. Markers were used to genotype progeny at D and R. Progeny carrying the empty vector in the genetic background D-rrrr produced white or purple tubers, while progeny with the same genotype and the dfr transgene produced red or purple tubers. HPLC and LC–MS/MS analyses of anthocyanins present in Chieftain and in a red-skinned progeny clone with the dfr transgene in a D-rrrr background revealed no qualitative differences. Thus, dfr can fully complement R, both in terms of tuber color and anthocyanin composition
Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization
<p>
The use of organometal trihalide perovskites (OTPs) in perovskite solar cells (PSCs) is revolutionizing the field of photovoltaics, which is being led by advances in solution processing of OTP thin films. First, we look at fundamental phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution involved in the solution-processing of OTP thin films for PSCs from a materials-science perspective. Established scientific principles that govern some of these phenomena are invoked in the context of specific literature examples of solution-processed OTP thin films. Second, the nature and the unique characteristics of OTP thin-film microstructures themselves are discussed from a materials-science perspective. Finally, we discuss the challenges and opportunities in the characterization of OTP thin films for not only gaining a deep understanding of defects and microstructures but also elucidating classical and nonclassical phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution in these films. The overall goal is to have deterministic control over the solution-processing of tailored OTP thin films with desired morphologies and microstructures.</p
CdSe Quantum Dot (QD)-Induced Morphological and Functional Impairments to Liver in Mice
Quantum dots (QDs), as unique nanoparticle probes, have been used in in vivo fluorescence imaging such as cancers. Due to the novel characteristics in fluorescence, QDs represent a family of promising substances to be used in experimental and clinical imaging. Thus far, the toxicity and harmful health effects from exposure (including environmental exposure) to QDs are not recognized, but are largely concerned by the public. To assess the biological effects of QDs, we established a mouse model of acute and chronic exposure to QDs. Results from the present study suggested that QD particles could readily spread into various organs, and liver was the major organ for QD accumulation in mice from both the acute and chronic exposure. QDs caused significant impairments to livers from mice with both acute and chronic QD exposure as reflected by morphological alternation to the hepatic lobules and increased oxidative stress. Moreover, QDs remarkably induced the production of intracellular reactive oxygen species (ROS) along with cytotoxicity, as characterized by a significant increase of the malondialdehyde (MDA) level within hepatocytes. However, the increase of the MDA level in response to QD treatment could be partially blunted by the pre-treatment of cells with beta-mercaptoethanol (β-ME). These data suggested ROS played a crucial role in causing oxidative stress-associated cellular damage from QD exposure; nevertheless other unidentified mediators might also be involved in QD-mediated cellular impairments. Importantly, we demonstrated that the hepatoxicity caused by QDs in vivo and in vitro was much greater than that induced by cadmium ions at a similar or even a higher dose. Taken together, the mechanism underlying QD-mediated biological influences might derive from the toxicity of QD particles themselves, and from free cadmium ions liberated from QDs as well
Caveolin-1 Plays a Crucial Role in Inhibiting Neuronal Differentiation of Neural Stem/Progenitor Cells via VEGF Signaling-Dependent Pathway
In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O2 for 24 h and then switched to 21% O2 for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O2. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs
The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin
A dominant allele at the D locus (also known as I in diploid potato) is required for the synthesis of red and purple anthocyanin pigments in tuber skin. It has previously been reported that D maps to a region of chromosome 10 that harbors one or more homologs of Petuniaan2, an R2R3 MYB transcription factor that coordinately regulates the expression of multiple anthocyanin biosynthetic genes in the floral limb. To test whether D acts similarly in tuber skin, RT-PCR was used to evaluate the expression of flavanone 3-hydroxylase (f3h), dihydroflavonol 4-reductase (dfr) and flavonoid 3′,5′-hydroxylase (f3′5′h). All three genes were expressed in the periderm of red- and purple-skinned clones, while dfr and f3′5′h were not expressed, and f3h was only weakly expressed, in white-skinned clones. A potato cDNA clone with similarity to an2 was isolated from an expression library prepared from red tuber skin, and an assay developed to distinguish the two alleles of this gene in a diploid potato clone known to be heterozygous Dd. One allele was observed to cosegregate with pigmented skin in an F1 population of 136 individuals. This allele was expressed in tuber skin of red- and purple-colored progeny, but not in white tubers, while other parental alleles were not expressed in white or colored tubers. The allele was placed under the control of a doubled 35S promoter and transformed into the light red-colored cultivar Désirée, the white-skinned cultivar Bintje, and two white diploid clones known to lack the functional allele of D. Transformants accumulated pigment in tuber skin, as well as in other tissues, including young foliage, flower petals, and tuber flesh
- …
