12,112 research outputs found
Spatiotemporal Patterns and Predictability of Cyberattacks
Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Annihilation Type Radiative Decays of Meson in Perturbative QCD Approach
With the perturbative QCD approach based on factorization, we study the
pure annihilation type radiative decays and . We find that the branching ratio of is
, which is too small to be measured
in the current factories of BaBar and Belle. The branching ratio of is , which is just
at the corner of being observable in the factories. A larger branching
ratio is also predicted.
These decay modes will help us testing the standard model and searching for new
physics signals.Comment: 4 pages, revtex, with 1 eps figur
A general software defect-proneness prediction framework
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.BACKGROUND - Predicting defect-prone software components is an economically important activity and so has received a good deal of attention. However, making sense of the many, and sometimes seemingly inconsistent, results is difficult. OBJECTIVE - We propose and evaluate a general framework for software defect prediction that supports 1) unbiased and 2) comprehensive comparison between competing prediction systems. METHOD - The framework is comprised of 1) scheme evaluation and 2) defect prediction components. The scheme evaluation analyzes the prediction performance of competing learning schemes for given historical data sets. The defect predictor builds models according to the evaluated learning scheme and predicts software defects with new data according to the constructed model. In order to demonstrate the performance of the proposed framework, we use both simulation and publicly available software defect data sets. RESULTS - The results show that we should choose different learning schemes for different data sets (i.e., no scheme dominates), that small details in conducting how evaluations are conducted can completely reverse findings, and last, that our proposed framework is more effective and less prone to bias than previous approaches. CONCLUSIONS - Failure to properly or fully evaluate a learning scheme can be misleading; however, these problems may be overcome by our proposed framework.National Natural Science Foundation of
Chin
Quantum phase diagram of an exactly solved mixed spin ladder
We investigate the quantum phase diagram of the exactly solved mixed
spin-(1/2,1) ladder via the thermodynamic Bethe ansatz (TBA). In the absence of
a magnetic field the model exhibits three quantum phases associated with su(2),
su(4) and su(6) symmetries. In the presence of a strong magnetic field, there
is a third and full saturation magnetization plateaux within the strong
antiferromagnetic rung coupling regime. Gapless and gapped phases appear in
turn as the magnetic field increases. For weak rung coupling, the fractional
magnetization plateau vanishs and exhibits new quantum phase transitions.
However, in the ferromagnetic coupling regime, the system does not have a third
saturation magnetization plat eau. The critical behaviour in the vicinity of
the critical points is also derived systematically using the TBA.Comment: 20 pages, 2 figure
Slow Adaptive OFDMA Systems Through Chance Constrained Programming
Adaptive OFDMA has recently been recognized as a promising technique for
providing high spectral efficiency in future broadband wireless systems. The
research over the last decade on adaptive OFDMA systems has focused on adapting
the allocation of radio resources, such as subcarriers and power, to the
instantaneous channel conditions of all users. However, such "fast" adaptation
requires high computational complexity and excessive signaling overhead. This
hinders the deployment of adaptive OFDMA systems worldwide. This paper proposes
a slow adaptive OFDMA scheme, in which the subcarrier allocation is updated on
a much slower timescale than that of the fluctuation of instantaneous channel
conditions. Meanwhile, the data rate requirements of individual users are
accommodated on the fast timescale with high probability, thereby meeting the
requirements except occasional outage. Such an objective has a natural chance
constrained programming formulation, which is known to be intractable. To
circumvent this difficulty, we formulate safe tractable constraints for the
problem based on recent advances in chance constrained programming. We then
develop a polynomial-time algorithm for computing an optimal solution to the
reformulated problem. Our results show that the proposed slow adaptation scheme
drastically reduces both computational cost and control signaling overhead when
compared with the conventional fast adaptive OFDMA. Our work can be viewed as
an initial attempt to apply the chance constrained programming methodology to
wireless system designs. Given that most wireless systems can tolerate an
occasional dip in the quality of service, we hope that the proposed methodology
will find further applications in wireless communications
- …
