214,325 research outputs found

    Classification of Arbitrary Multipartite Entangled States under Local Unitary Equivalence

    Full text link
    We propose a practical method for finding the canonical forms of arbitrary dimensional multipartite entangled states, either pure or mixed. By extending the technique developed in one of our recent works, the canonical forms for the mixed NN-partite entangled states are constructed where they have inherited local unitary symmetries from their corresponding N+1N+1 pure state counterparts. A systematic scheme to express the local symmetries of the canonical form is also presented, which provides a feasible way of verifying the local unitary equivalence for two multipartite entangled states.Comment: 22 pages; published in J. Phys. A: Math. Theo

    Repeating head-on collisions in an optical trap and the evaluation of spin-dependent interactions among neutral particles

    Full text link
    A dynamic process of repeating collisions of a pair of trapped neutral particles with weak spin-dependent interaction is designed and studied. Related theoretical derivation and numerical calculation have been performed to study the inherent coordinate-spin and momentum-spin correlation. Due to the repeating collisions the effect of the weak interaction can be accumulated and enlarged, and therefore can be eventually detected. Numerical results suggest that the Cr-Cr interaction, which has not yet been completely clear, could be thereby determined. The design can be in general used to determine various interactions among neutral atoms and molecules, in particular for the determination of very weak forces.Comment: 15 pages, 7 figure

    Nuclear Three-body Force Effect on a Kaon Condensate in Neutron Star Matter

    Get PDF
    We explore the effects of a microscopic nuclear three-body force on the threshold baryon density for kaon condensation in chemical equilibrium neutron star matter and on the composition of the kaon condensed phase in the framework of the Brueckner-Hartree-Fock approach. Our results show that the nuclear three-body force affects strongly the high-density behavior of nuclear symmetry energy and consequently reduces considerably the critical density for kaon condensation provided that the proton strangeness content is not very large. The dependence of the threshold density on the symmetry energy becomes weaker as the proton strangeness content increases. The kaon condensed phase of neutron star matter turns out to be proton-rich instead of neutron-rich. The three-body force has an important influence on the composition of the kaon condensed phase. Inclusion of the three-body force contribution in the nuclear symmetry energy results in a significant reduction of the proton and kaon fractions in the kaon condensed phase which is more proton-rich in the case of no three-body force. Our results are compared to other theoretical predictions by adopting different models for the nuclear symmetry energy. The possible implications of our results for the neutron star structure are also briefly discussed.Comment: 15 pages, 5 figure

    Inelastic Collisions in an Ultracold quasi-2D Gas

    Full text link
    We present a formalism for rigorous calculations of cross sections for inelastic and reactive collisions of ultracold atoms and molecules confined by laser fields in quasi-2D geometry. Our results show that the elastic-to-inelastic ratios of collision cross sections are enhanced in the presence of a laser confinement and that the threshold energy dependence of the collision cross sections can be tuned by varying the confinement strength and external magnetic fields. The enhancement of the elastic-to-inelastic ratios is inversely proportional to ϵ/ω0\sqrt{\epsilon/\hbar \omega_0}, where ϵ\epsilon is the kinetic energy and ω0\omega_0 is the oscillation frequency of the trapped particles in the confinement potential.Comment: 4 pages, 4 figure

    A new small satellite sunspot triggering recurrent standard- and blowout-coronal jets

    Full text link
    In this paper,we report a detailed analysis of recurrent jets originated from a location with emerging, canceling and converging negative magnetic field at the east edge of NOAA active region AR11166 from 2011 March 09 to 10. The event presented several interesting features. First, a satellite sunspot appeared and collided with a pre-existing opposite polarity magnetic field and caused a recurrent solar jet event. Second, the evolution of the jets showed blowout-like nature and standard characteristics. Third, the satellite sunspot exhibited a motion toward southeast of AR11166 and merged with the emerging flux near the opposite polarity sunspot penumbra, which afterward, due to flux convergence and cancellation episodes, caused recurrent jets. Fourth, three of the blowout jets associated with coronal mass ejections (CMEs), were observed from field of view of the Solar Terrestrial Relations Observatory. Fifth, almost all the blowout jet eruptions were accompanied with flares or with more intense brightening in the jet base region, while almost standard jets did not manifest such obvious feature during eruptions. The most important, the blowout jets were inclined to faster and larger scale than the standard jets. The standard jets instead were inclined to relative longer-lasting. The obvious shearing and twisting motions of the magnetic field may be interpreted as due to the shearing and twisting motions for a blowout jet eruption. From the statistical results, about 30% blowout jets directly developed into CMEs. It suggests that the blowout jets and CMEs should have a tight relationship.Comment: ApJ 18 pages, 7 figure

    Isospin effect on nuclear stopping in intermediate energy Heavy Ion Collisions

    Get PDF
    By using the Isospin Dependent Quantum Molecular Dynamics Model (IQMD), we study the dependence of nuclear stopping Q_{ZZ}/A and R in intermediate energy heavy ion collisions on system size, initial N/Z, isospin symmetry potential and the medium correction of two-body cross sections. We find the effect of initial N/Z ratio, isospin symmetry potential on stopping is weak. The excitation function of Q_{ZZ}/A and R depends on the form of medium correction of two-body cross sections, the equation of state of nuclear matter (EOS). Our results show the behavior of the excitation function of Q_{ZZ}/A and R can provide clearer information of the isospin dependence of the medium correction of two-body cross sections.Comment: 3 pages including 4 figure

    Effects of spin current on ferromagnets

    Full text link
    When a spin-polarized current flows through a ferromagnet, the local magnetization receives a spin torque. Two consequences of this spin torque are studied. First, the uniformly magnetized ferromagnet becomes unstable if a sufficiently large current is applied. The characteristics of the instability include spin wave generation and magnetization chaos. Second, the spin torque has profound effects on the structure and dynamics of the magnetic domain wall. A detail analysis on the domain wall mass, kinetic energy and wall depinning threshold is given

    Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar

    Get PDF
    We present a technique and results of 2-D imaging of Faraday rotation and total electron content using spaceborne L band polarimetric synthetic aperture radar (PolSAR). The results are obtained by processing PolSAR data collected using the Phased Array type L-band Synthetic Aperture Radar (PALSAR) on board the Advanced Land Observation Satellite. Distinguished ionospheric inhomogeneities are captured in 2-D images from space with relatively high resolutions of hundreds of meters to a couple of kilometers in auroral-, middle-, and low-latitude regions. The observed phenomena include aurora-associated ionospheric enhancement arcs, the middle-latitude trough, traveling ionospheric disturbances, and plasma bubbles, as well as ionospheric irregularities. These demonstrate a new capability of spaceborne synthetic aperture radar that will not only provide measurements to correction of ionospheric effects in Earth science imagery but also significantly benefit ionospheric studies

    Theoretical understanding of the quasiparticle dispersion in bilayer high-TcT_{c} superconductors

    Get PDF
    The renormalization of quasiparticle (QP) dispersion in bilayer high-TcT_{c} cuprates is investigated theoretically by examining respectively the interactions of the QP with spin fluctuations (SF) and phonons. It is illustrated that both interactions are able to give rise to a kink in the dispersion around the antinodes (near (π,0)(\pi,0)). However, remarkable differences between the two cases are found for the peak/dip/hump structure in the lineshape, the QP weight, and the interlayer coupling effect on the kink, which are suggested to serve as a discriminance to single out the dominant interaction in the superconducting state. A comparison to recent photoemission experiments shows clearly that the coupling to the spin resonance is dominant for the QP around antinodes in bilayer systems.Comment: 4 pages, 4 figure
    corecore