214,325 research outputs found
Classification of Arbitrary Multipartite Entangled States under Local Unitary Equivalence
We propose a practical method for finding the canonical forms of arbitrary
dimensional multipartite entangled states, either pure or mixed. By extending
the technique developed in one of our recent works, the canonical forms for the
mixed -partite entangled states are constructed where they have inherited
local unitary symmetries from their corresponding pure state
counterparts. A systematic scheme to express the local symmetries of the
canonical form is also presented, which provides a feasible way of verifying
the local unitary equivalence for two multipartite entangled states.Comment: 22 pages; published in J. Phys. A: Math. Theo
Repeating head-on collisions in an optical trap and the evaluation of spin-dependent interactions among neutral particles
A dynamic process of repeating collisions of a pair of trapped neutral
particles with weak spin-dependent interaction is designed and studied. Related
theoretical derivation and numerical calculation have been performed to study
the inherent coordinate-spin and momentum-spin correlation. Due to the
repeating collisions the effect of the weak interaction can be accumulated and
enlarged, and therefore can be eventually detected. Numerical results suggest
that the Cr-Cr interaction, which has not yet been completely clear, could be
thereby determined. The design can be in general used to determine various
interactions among neutral atoms and molecules, in particular for the
determination of very weak forces.Comment: 15 pages, 7 figure
Nuclear Three-body Force Effect on a Kaon Condensate in Neutron Star Matter
We explore the effects of a microscopic nuclear three-body force on the
threshold baryon density for kaon condensation in chemical equilibrium neutron
star matter and on the composition of the kaon condensed phase in the framework
of the Brueckner-Hartree-Fock approach. Our results show that the nuclear
three-body force affects strongly the high-density behavior of nuclear symmetry
energy and consequently reduces considerably the critical density for kaon
condensation provided that the proton strangeness content is not very large.
The dependence of the threshold density on the symmetry energy becomes weaker
as the proton strangeness content increases. The kaon condensed phase of
neutron star matter turns out to be proton-rich instead of neutron-rich. The
three-body force has an important influence on the composition of the kaon
condensed phase. Inclusion of the three-body force contribution in the nuclear
symmetry energy results in a significant reduction of the proton and kaon
fractions in the kaon condensed phase which is more proton-rich in the case of
no three-body force. Our results are compared to other theoretical predictions
by adopting different models for the nuclear symmetry energy. The possible
implications of our results for the neutron star structure are also briefly
discussed.Comment: 15 pages, 5 figure
Inelastic Collisions in an Ultracold quasi-2D Gas
We present a formalism for rigorous calculations of cross sections for
inelastic and reactive collisions of ultracold atoms and molecules confined by
laser fields in quasi-2D geometry. Our results show that the
elastic-to-inelastic ratios of collision cross sections are enhanced in the
presence of a laser confinement and that the threshold energy dependence of the
collision cross sections can be tuned by varying the confinement strength and
external magnetic fields. The enhancement of the elastic-to-inelastic ratios is
inversely proportional to , where is
the kinetic energy and is the oscillation frequency of the trapped
particles in the confinement potential.Comment: 4 pages, 4 figure
A new small satellite sunspot triggering recurrent standard- and blowout-coronal jets
In this paper,we report a detailed analysis of recurrent jets originated from
a location with emerging, canceling and converging negative magnetic field at
the east edge of NOAA active region AR11166 from 2011 March 09 to 10. The event
presented several interesting features. First, a satellite sunspot appeared and
collided with a pre-existing opposite polarity magnetic field and caused a
recurrent solar jet event. Second, the evolution of the jets showed
blowout-like nature and standard characteristics. Third, the satellite sunspot
exhibited a motion toward southeast of AR11166 and merged with the emerging
flux near the opposite polarity sunspot penumbra, which afterward, due to flux
convergence and cancellation episodes, caused recurrent jets. Fourth, three of
the blowout jets associated with coronal mass ejections (CMEs), were observed
from field of view of the Solar Terrestrial Relations Observatory. Fifth,
almost all the blowout jet eruptions were accompanied with flares or with more
intense brightening in the jet base region, while almost standard jets did not
manifest such obvious feature during eruptions. The most important, the blowout
jets were inclined to faster and larger scale than the standard jets. The
standard jets instead were inclined to relative longer-lasting. The obvious
shearing and twisting motions of the magnetic field may be interpreted as due
to the shearing and twisting motions for a blowout jet eruption. From the
statistical results, about 30% blowout jets directly developed into CMEs. It
suggests that the blowout jets and CMEs should have a tight relationship.Comment: ApJ 18 pages, 7 figure
Isospin effect on nuclear stopping in intermediate energy Heavy Ion Collisions
By using the Isospin Dependent Quantum Molecular Dynamics Model (IQMD), we
study the dependence of nuclear stopping Q_{ZZ}/A and R in intermediate energy
heavy ion collisions on system size, initial N/Z, isospin symmetry potential
and the medium correction of two-body cross sections. We find the effect of
initial N/Z ratio, isospin symmetry potential on stopping is weak. The
excitation function of Q_{ZZ}/A and R depends on the form of medium correction
of two-body cross sections, the equation of state of nuclear matter (EOS). Our
results show the behavior of the excitation function of Q_{ZZ}/A and R can
provide clearer information of the isospin dependence of the medium correction
of two-body cross sections.Comment: 3 pages including 4 figure
Effects of spin current on ferromagnets
When a spin-polarized current flows through a ferromagnet, the local
magnetization receives a spin torque. Two consequences of this spin torque are
studied. First, the uniformly magnetized ferromagnet becomes unstable if a
sufficiently large current is applied. The characteristics of the instability
include spin wave generation and magnetization chaos. Second, the spin torque
has profound effects on the structure and dynamics of the magnetic domain wall.
A detail analysis on the domain wall mass, kinetic energy and wall depinning
threshold is given
Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar
We present a technique and results of 2-D imaging of Faraday rotation and total electron content using spaceborne L band polarimetric synthetic aperture radar (PolSAR). The results are obtained by processing PolSAR data collected using the Phased Array type L-band Synthetic Aperture Radar (PALSAR) on board the Advanced Land Observation Satellite. Distinguished ionospheric inhomogeneities are captured in 2-D images from space with relatively high resolutions of hundreds of meters to a couple of kilometers in auroral-, middle-, and low-latitude regions. The observed phenomena include aurora-associated ionospheric enhancement arcs, the middle-latitude trough, traveling ionospheric disturbances, and plasma bubbles, as well as ionospheric irregularities. These demonstrate a new capability of spaceborne synthetic aperture radar that will not only provide measurements to correction of ionospheric effects in Earth science imagery but also significantly benefit ionospheric studies
Theoretical understanding of the quasiparticle dispersion in bilayer high- superconductors
The renormalization of quasiparticle (QP) dispersion in bilayer high-
cuprates is investigated theoretically by examining respectively the
interactions of the QP with spin fluctuations (SF) and phonons. It is
illustrated that both interactions are able to give rise to a kink in the
dispersion around the antinodes (near ). However, remarkable
differences between the two cases are found for the peak/dip/hump structure in
the lineshape, the QP weight, and the interlayer coupling effect on the kink,
which are suggested to serve as a discriminance to single out the dominant
interaction in the superconducting state. A comparison to recent photoemission
experiments shows clearly that the coupling to the spin resonance is dominant
for the QP around antinodes in bilayer systems.Comment: 4 pages, 4 figure
- …
