81,263 research outputs found
Particle simulation of lower hybrid waves in tokamak plasmas
Global particle simulations of the lower hybrid waves have been carried out
using fully kinetic ions and drift kinetic electrons with a realistic
electron-to-ion mass ratio. The lower hybrid wave frequency, mode structure,
and electron Landau damping from the electrostatic simulations agree very well
with the analytic theory. Linear simulation of the propagation of a lower
hybrid wave-packet in the toroidal geometry shows that the wave propagates
faster in the high field side than the low field side, in agreement with a ray
tracing calculation. Electromagnetic benchmarks of lower hybrid wave dispersion
relation are also carried out. Electromagnetic mode conversion are observed in
toroidal geometry, slow waves are launched at the plasma boundary and converts
to fast waves at the mode conversion layer, which is consistent with linear
theory.Comment: 8 pages, 11 figure
Multi-aspect, robust, and memory exclusive guest os fingerprinting
Precise fingerprinting of an operating system (OS) is critical to many security and forensics applications in the cloud, such as virtual machine (VM) introspection, penetration testing, guest OS administration, kernel dump analysis, and memory forensics. The existing OS fingerprinting techniques primarily inspect network packets or CPU states, and they all fall short in precision and usability. As the physical memory of a VM always exists in all these applications, in this article, we present OS-Sommelier+, a multi-aspect, memory exclusive approach for precise and robust guest OS fingerprinting in the cloud. It works as follows: given a physical memory dump of a guest OS, OS-Sommelier+ first uses a code hash based approach from kernel code aspect to determine the guest OS version. If code hash approach fails, OS-Sommelier+ then uses a kernel data signature based approach from kernel data aspect to determine the version. We have implemented a prototype system, and tested it with a number of Linux kernels. Our evaluation results show that the code hash approach is faster but can only fingerprint the known kernels, and data signature approach complements the code signature approach and can fingerprint even unknown kernels
Field study on adaptive thermal comfort in typical air conditioned classrooms
This study investigates adaptive thermal comfort in air conditioned classrooms in Hong Kong. A field survey was conducted in several typical classrooms at the City University of Hong Kong. This survey covered objective measurement of thermal environment parameters and subjective human thermal responses. A total of 982 student volunteers participated in the investigation. The results indicate that students in light clothing (0.42 clo) have adapted to the cooler classroom environments. The neutral temperature is very close to the preferred temperature of approximately 24 °C. Based on the MTSV ranging between −0.5 and + 0.5, the comfort range is between 21.56 °C and 26.75 °C. The lower limit is below that of the ASHRAE standard. Of the predicted mean vote (PMV) and the University of California, Berkeley (UCB) model, the UCB model predictions agree better with the mean thermal sensation vote (MTSV). Also, the respective fit regression models of the MTSV versus each of the following: operative temperature (Top), PMV, and UCB were obtained. This study provides a better understanding of acceptable classroom temperatures
Topological electronic structure and Weyl semimetal in the TlBiSe class of semiconductors
We present an analysis of bulk and surface electronic structures of thallium
based ternary III-V-VI series of compounds TlMQ, where M=Bi or Sb and
Q=S, Se or Te, using the ab initio density functional theory framework. Based
on parity analysis and (111) surface electronic structure, we predict
TlSbSe, TlSbTe, TlBiSe and TlBiTe to be non-trivial topological
insulators with a single Dirac cone at the -point, and TlSbS and
TlBiS to be trivial band insulators. Our predicted topological phases agree
well with available angle-resolved photoemission spectroscopy (ARPES)
measurements, in particular the topological phase changes between TlBiSe
and TlBiS. Moreover, we propose that Weyl semimetal can be realized at the
topological critical point in TlBi(SSe) and
TlBi(STe) alloys by breaking the inversion symmetry in the
layer by layer growth in the order of Tl-Se(Te)-Bi-S, yielding six Dirac cones
centered along the directions in the bulk band structure.Comment: 9 pages, 10 figures,Accepted for publication in Physical Review B
(2012
Premature recruitment of oocyte pool and increased mTOR activity in Fmr1 knockout mice and reversal of phenotype with rapamycin.
While mutations in the fragile X mental retardation-1 (FMR1) gene are associated with varying reproductive outcomes in females, the effects of a complete lack of FMR1 expression are not known. Here, we studied the ovarian and reproductive phenotypes in an Fmr1 knockout (KO) mouse model and the role of mammalian target of rapamycin (mTOR) signaling. Breeding, histologic and mTOR signaling data were obtained at multiple time points in KO and wild type (WT) mice fed a control or rapamycin (mTOR inhibitor) diet. KO mice showed an earlier decline in ovarian reserve than WT mice with an increased proportion of activated follicles. mTOR and phosphorylated S6 kinase (p-S6K) levels, a measure of downstream mTOR signaling, were elevated in the KO ovaries. Rapamycin blocked these effects in KO mice, and increased the primordial follicle pool and age of last litter in WT mice. Our data demonstrates an early decline in reproductive capacity in Fmr1 KO mice and proposes that premature recruitment of the primordial pool via altered mTOR signaling may be the mechanism. Reversal of phenotypes and protein levels in rapamycin-treated KO mice, as well as increased reproductive lifespan of rapamycin-fed WT mice, suggest the mTOR pathway as a potential therapeutic target
Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation
The Josephson effects associated with quantum tunneling of Cooper pairs
manifest as nonlinear relations between the superconductivity phase difference
and the bias current and voltage. Many novel phenomena appear, such as Shapiro
steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under
microwave shining, which can be used as a voltage standard. Inversely, the
Josephson effects provide a unique way to generate high-frequency
electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate
high-Tc superconductors accelerated the effort to develop novel source of EM
waves based on a stack of atomically dense-packed intrinsic Josephson junctions
(IJJs), since the large superconductivity gap covers the whole terahertz
frequency band. Very recently, strong and coherent terahertz radiations have
been successfully generated from a mesa structure of
single crystal which works both as the source
of energy gain and as the cavity for resonance. It is then found theoretically
that, due to huge inductive coupling of IJJs produced by the nanometer junction
separation and the large London penetration depth of order of of
the material, a novel dynamic state is stabilized in the coupled sine-Gordon
system, in which kinks in phase differences are developed responding
to the standing wave of Josephson plasma and are stacked alternatively in the
c-axis. This novel solution of the inductively coupled sine-Gordon equations
captures the important features of experimental observations. The theory
predicts an optimal radiation power larger than the one available to date by
orders of magnitude, and thus suggests the technological relevance of the
phenomena.Comment: review article (69 pages, 30 figures
Exploration of nonlocalities in ensembles consisting of bipartite quantum states
It is revealed that ensembles consisting of multipartite quantum states can
exhibit different kinds of nonlocalities. An operational measure is introduced
to quantify nonlocalities in ensembles consisting of bipartite quantum states.
Various upper and lower bounds for the measure are estimated and the exact
values for ensembles consisting of mutually orthogonal maximally entangled
bipartite states are evaluated.Comment: The title and some contents changed, 4 pages, no figure
A sharp stability criterion for the Vlasov-Maxwell system
We consider the linear stability problem for a 3D cylindrically symmetric
equilibrium of the relativistic Vlasov-Maxwell system that describes a
collisionless plasma. For an equilibrium whose distribution function decreases
monotonically with the particle energy, we obtained a linear stability
criterion in our previous paper. Here we prove that this criterion is sharp;
that is, there would otherwise be an exponentially growing solution to the
linearized system. Therefore for the class of symmetric Vlasov-Maxwell
equilibria, we establish an energy principle for linear stability. We also
treat the considerably simpler periodic 1.5D case. The new formulation
introduced here is applicable as well to the nonrelativistic case, to other
symmetries, and to general equilibria
- …
