158,827 research outputs found
Estimation of Source- and Quality-Differentiated Import Demand Under Aggregate Import Quota: An Application to Japan's Wheat
International Relations/Trade,
Repeating head-on collisions in an optical trap and the evaluation of spin-dependent interactions among neutral particles
A dynamic process of repeating collisions of a pair of trapped neutral
particles with weak spin-dependent interaction is designed and studied. Related
theoretical derivation and numerical calculation have been performed to study
the inherent coordinate-spin and momentum-spin correlation. Due to the
repeating collisions the effect of the weak interaction can be accumulated and
enlarged, and therefore can be eventually detected. Numerical results suggest
that the Cr-Cr interaction, which has not yet been completely clear, could be
thereby determined. The design can be in general used to determine various
interactions among neutral atoms and molecules, in particular for the
determination of very weak forces.Comment: 15 pages, 7 figure
Microstructural evolution in materials during thermal processing
Copyright © 2012 Joseph K. L. Lai et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.This article is made available through the Brunel Open Access Publishing Fund
Diagnostics of macroscopic quantum states of Bose-Einstein condensate in double-well potential by nonstationary Josephson effect
We propose a method of diagnostic of a degenerate ground state of Bose
condensate in a double well potential. The method is based on the study of the
one-particle coherent tunneling under switching the time-dependent weak
Josephson coupling between the wells. We obtain a simple expression that allows
to determine the phase of the condensate and the total number of the particles
in the condensate from the relative number of the particles in two wells
measured before the Josephson coupling is switched on and
after it is switched off. The specifics of the application of the method in the
cases of the external and the internal Josephson effect are discussed.Comment: 3 page
Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory
Five-dimensional collective Hamiltonian based on the covariant density
functional theory has been applied to study the the low-lying states of
even-even Gd isotopes. The shape evolution from Gd to
Gd is presented. The experimental energy spectra and intraband
transition probabilities for the Gd isotopes are reproduced by the
present calculations. The relative ratios in present calculations are
also compared with the available interacting boson model results and
experimental data. It is found that the occupations of neutron
orbital result in the well-deformed prolate shape, and are essential for Gd
isotopes.Comment: 11pages, 10figure
Shell-model-like approach based on cranking covariant density functional theory: bandcrossing and shape evolution in Fe
The shell-model-like approach is implemented to treat the cranking many-body
Hamiltonian based on the covariant density functional theory including pairing
correlations with exact particle number conservation. The self-consistency is
achieved by iterating the single-particle occupation probabilities back to the
densities and currents. As an example, the rotational structures observed in
the neutron-rich nucleus Fe are investigated and analyzed. Without
introducing any \emph{ad hoc} parameters, the bandheads, the rotational
spectra, and the relations between the angular momentum and rotational
frequency for the positive parity band A, and negative parity bands B and C are
well reproduced. The essential role of the pairing correlations is revealed. It
is found that for band A, the bandcrossing is due to the change of the last two
occupied neutrons from the signature partners to the
signature partners. For the two negative parity signature partner bands B and
C, the bandcrossings are due to the pseudo-crossing between the
and the orbitals. Generally speaking, the deformation
parameters for bands A, B, and C decrease with rotational frequency.
For band A, the deformation jumps from to
around the bandcrossing. In comparison with its signature partner band C, band
B exhibits appreciable triaxial deformation
Correlation between Peak Energy and Peak Luminosity in Short Gamma-Ray Bursts
A correlation between the peak luminosity and the peak energy has been found
by Yonetoku et al. as for 11 pre-Swift long
gamma-ray bursts. In this study, for a greatly expanded sample of 148 long
gamma-ray bursts in the Swift era, we find that the correlation still exists,
but most likely with a slightly different power-law index, i.e., . In addition, we have collected 17 short gamma-ray bursts with
necessary data. It is found that the correlation of also exists for this sample of short events. It is argued that the
radiation mechanism of both long and short gamma-ray bursts should be similar,
i.e., of quasi-thermal origin caused by the photosphere and the dissipation
occurring very near the central engine. Some key parameters of the process are
constrained. Our results suggest that the radiation process of both long and
short bursts may be dominated by thermal emission, rather than the single
synchrotron radiation. This might put strong physical constraints on the
theoretical models.Comment: 22 pages, 5 figures and 1 table, Accepted for publication in Ap
- …
