34,799 research outputs found
Probing the QCD Critical Point with Higher Moments of Net-proton Multiplicity Distributions
Higher moments of event-by-event net-proton multiplicity distributions are
applied to search for the QCD critical point in the heavy ion collisions. It
has been demonstrated that higher moments as well as moment products are
sensitive to the correlation length and directly connected to the thermodynamic
susceptibilities computed in the Lattice QCD and Hadron Resonance Gas (HRG)
model. In this paper, we will present measurements for kurtosis (),
skewness () and variance () of net-proton multiplicity
distributions at the mid-rapidity () and GeV/ for
Au+Au collisions at =19.6, 39, 62.4, 130 and 200 GeV, Cu+Cu
collisions at =22.4, 62.4 and 200 GeV, d+Au collisions at
=200 GeV and p+p collisions at =62.4 and 200 GeV.
The moment products and of net-proton
distributions, which are related to volume independent baryon number
susceptibility ratio, are compared to the Lattice QCD and HRG model
calculations. The and of net-proton
distributions are consistent with Lattice QCD and HRG model calculations at
high energy, which support the thermalization of the colliding system.
Deviations of and for the Au+Au collisions at
low energies from HRG model calculations are also observed.Comment: 10 pages, 8 figures, Proceedings of 27th Winter Workshon on Nuclear
Dynamics. Feb. 6-13 (2011
Recommended from our members
Revisiting individual and group differences in thermal comfort based on ASHRAE database
Different thermal demands and preferences between individuals lead to a low occupant satisfaction rate, despite the high energy consumption by HVAC system. This study aims to quantify the difference in thermal demands, and to compare the influential factors which might lead to those differences. With the recently released ASHRAE Database, we quantitatively answered the following two research questions: which factors would lead to marked individual difference, and what the magnitude of this difference is. Linear regression has been applied to describe the macro-trend of how people feel thermally under different temperatures. Three types of factors which might lead to different thermal demands have been studied and compared in this study, i.e. individual factors, building characteristics and geographical factors. It was found that the local climate has the most marked impact on the neutral temperature, with an effect size of 3.5 °C; followed by country, HVAC operation mode and body built, which lead to a difference of more than 1 °C. In terms of the thermal sensitivity, building type and local climate are the most influential factors. Subjects in residential buildings or coming from Dry climate zone could accept 2.5 °C wider temperature range than those in office, education buildings or from Continental climate zone. The findings of this research could help thermal comfort researchers and designers to identify influential factors that might lead to individual difference, and could shed light on the feature selection for the development of personal comfort models
Analysis of RFID adoption in China
Radio-frequency identification (RFID) is an emerging technology for automatic data capturing, enabling real time information visibility. It promises great potentials in many industries to improve logistics operational efficiency, to help reduce inventory, and to automate asset/item track and trace, etc. The RFID adoption in China is a highly concerned topic as China has become a world manufacturing center. In this paper, we have presented an overview for China's current RFID adoption status. Based on Rogers's DOI theory, a methodology is developed for analyzing RFID adoption in China. With this methodology, China's RFID adoption status is identified, and ways to speed up the rate of adoption are also suggested. © 2007 IEEE.published_or_final_versio
Null Result for the Violation of Equivalence Principle with Free-Fall Rotating Gyroscopes
The differential acceleration between a rotating mechanical gyroscope and a
non-rotating one is directly measured by using a double free-fall
interferometer, and no apparent differential acceleration has been observed at
the relative level of 2x10{-6}. It means that the equivalence principle is
still valid for rotating extended bodies, i.e., the spin-gravity interaction
between the extended bodies has not been observed at this level. Also, to the
limit of our experimental sensitivity, there is no observed asymmetrical effect
or anti-gravity of the rotating gyroscopes as reported by hayasaka et al.Comment: REVTeX 3.0, 7 pages with 4 Postscript figure
Critical exponents of the two-layer Ising model
The symmetric two-layer Ising model (TLIM) is studied by the corner transfer
matrix renormalisation group method. The critical points and critical exponents
are calculated. It is found that the TLIM belongs to the same universality
class as the Ising model. The shift exponent is calculated to be 1.773, which
is consistent with the theoretical prediction 1.75 with 1.3% deviation.Comment: 7 pages, with 10 figures include
Discussion on Event Horizon and Quantum Ergosphere of Evaporating Black Holes in a Tunnelling Framework
In this paper, with the Parikh-Wilczek tunnelling framework the positions of
the event horizon of the Vaidya black hole and the Vaidya-Bonner black hole are
calculated respectively. We find that the event horizon and the apparent
horizon of these two black holes correspond respectively to the two turning
points of the Hawking radiation tunnelling barrier. That is, the quantum
ergosphere coincides with the tunnelling barrier. Our calculation also implies
that the Hawking radiation comes from the apparent horizon.Comment: 8 page
Dynamic Monte Carlo Study of the Two-Dimensional Quantum XY Model
We present a dynamic Monte Carlo study of the Kosterlitz-Thouless phase
transition for the spin-1/2 quantum XY model in two dimensions. The short-time
dynamic scaling behaviour is found and the dynamical exponent , and
the static exponent are determined at the transition temperature.Comment: 6 pages with 3 figure
Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom
The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards
- …
