176,839 research outputs found
Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures
Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Å), the DC and 3DP models yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface as well as half-space phonons. For a 30-Å GaN channel, for instance, the 3DP model is found to underestimate rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by 40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold. Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the threshold emission and the near subband-bottom absorption). All the results are well explained in terms of electron and phonon densities of states
Shell-model-like approach based on cranking covariant density functional theory: bandcrossing and shape evolution in Fe
The shell-model-like approach is implemented to treat the cranking many-body
Hamiltonian based on the covariant density functional theory including pairing
correlations with exact particle number conservation. The self-consistency is
achieved by iterating the single-particle occupation probabilities back to the
densities and currents. As an example, the rotational structures observed in
the neutron-rich nucleus Fe are investigated and analyzed. Without
introducing any \emph{ad hoc} parameters, the bandheads, the rotational
spectra, and the relations between the angular momentum and rotational
frequency for the positive parity band A, and negative parity bands B and C are
well reproduced. The essential role of the pairing correlations is revealed. It
is found that for band A, the bandcrossing is due to the change of the last two
occupied neutrons from the signature partners to the
signature partners. For the two negative parity signature partner bands B and
C, the bandcrossings are due to the pseudo-crossing between the
and the orbitals. Generally speaking, the deformation
parameters for bands A, B, and C decrease with rotational frequency.
For band A, the deformation jumps from to
around the bandcrossing. In comparison with its signature partner band C, band
B exhibits appreciable triaxial deformation
Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory
Five-dimensional collective Hamiltonian based on the covariant density
functional theory has been applied to study the the low-lying states of
even-even Gd isotopes. The shape evolution from Gd to
Gd is presented. The experimental energy spectra and intraband
transition probabilities for the Gd isotopes are reproduced by the
present calculations. The relative ratios in present calculations are
also compared with the available interacting boson model results and
experimental data. It is found that the occupations of neutron
orbital result in the well-deformed prolate shape, and are essential for Gd
isotopes.Comment: 11pages, 10figure
Correlation between Peak Energy and Peak Luminosity in Short Gamma-Ray Bursts
A correlation between the peak luminosity and the peak energy has been found
by Yonetoku et al. as for 11 pre-Swift long
gamma-ray bursts. In this study, for a greatly expanded sample of 148 long
gamma-ray bursts in the Swift era, we find that the correlation still exists,
but most likely with a slightly different power-law index, i.e., . In addition, we have collected 17 short gamma-ray bursts with
necessary data. It is found that the correlation of also exists for this sample of short events. It is argued that the
radiation mechanism of both long and short gamma-ray bursts should be similar,
i.e., of quasi-thermal origin caused by the photosphere and the dissipation
occurring very near the central engine. Some key parameters of the process are
constrained. Our results suggest that the radiation process of both long and
short bursts may be dominated by thermal emission, rather than the single
synchrotron radiation. This might put strong physical constraints on the
theoretical models.Comment: 22 pages, 5 figures and 1 table, Accepted for publication in Ap
The Scaling Behavior of Classical Wave Transport in Mesoscopic Media at the Localization Transition
The propagation of classical wave in disordered media at the Anderson
localization transition is studied. Our results show that the classical waves
may follow a different scaling behavior from that for electrons. For electrons,
the effect of weak localization due to interference of recurrent scattering
paths is limited within a spherical volume because of electron-electron or
electron-phonon scattering, while for classical waves, it is the sample
geometry that determine the amount of recurrent scattering paths that
contribute. It is found that the weak localization effect is weaker in both
cubic and slab geometry than in spherical geometry. As a result, the averaged
static diffusion constant D(L) scales like ln(L)/L in cubic or slab geometry
and the corresponding transmission follows ~ln L/L^2. This is in contrast
to the behavior of D(L)~1/L and ~1/L^2 obtained previously for electrons
or spherical samples. For wave dynamics, we solve the Bethe-Salpeter equation
in a disordered slab with the recurrent scattering incorporated in a
self-consistent manner. All of the static and dynamic transport quantities
studied are found to follow the scaling behavior of D(L). We have also
considered position-dependent weak localization effects by using a plausible
form of position-dependent diffusion constant D(z). The same scaling behavior
is found, i.e., ~ln L/L^2.Comment: 11 pages, 12 figures. Submitted to Phys. Rev. B on 3 May 200
Evolving small-world networks with geographical attachment preference
We introduce a minimal extended evolving model for small-world networks which
is controlled by a parameter. In this model the network growth is determined by
the attachment of new nodes to already existing nodes that are geographically
close. We analyze several topological properties for our model both
analytically and by numerical simulations. The resulting network shows some
important characteristics of real-life networks such as the small-world effect
and a high clustering.Comment: 11 pages, 4 figure
- …
