10,142 research outputs found
Comparison of Entropy Production Rates in Two Different Types of Self-organized Flows: B\'{e}nard Convection and Zonal flow
Entropy production rate (EPR) is often effective to describe how a structure
is self-organized in a nonequilibrium thermodynamic system. The "minimum EPR
principle" is widely applicable to characterizing self-organized structures,
but is sometimes disproved by observations of "maximum EPR states." Here we
delineate a dual relation between the minimum and maximum principles; the
mathematical representation of the duality is given by a Legendre
transformation. For explicit formulation, we consider heat transport in the
boundary layer of fusion plasma [Phys. Plasmas {\bf 15}, 032307 (2008)]. The
mechanism of bifurcation and hysteresis (which are the determining
characteristics of the so-called H-mode, a self-organized state of reduced
thermal conduction) is explained by multiple tangent lines to a pleated graph
of an appropriate thermodynamic potential. In the nonlinear regime, we have to
generalize Onsager's dissipation function. The generalized function is no
longer equivalent to EPR; then EPR ceases to be the determinant of the
operating point, and may take either minimum or maximum values depending on how
the system is driven
A Possible Phase Transition in beta-pyrochlore Compounds
We investigate a lattice of interacting anharmonic oscillators by using a
mean field theory and exact diagonalization. We construct an effective
five-state hopping model with intersite repulsions as a model for
beta-pyrochlore AOs_2O_6(A=K, Rb or Cs). We obtain the first order phase
transition line from large to small oscillation amplitude phases as temperature
decreases. We also discuss the possibility of a phase with local electric
polarizations. Our theory can explain the origin of the mysterious first order
transition in KOs_2O_6.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
Effects of next-nearest-neighbor hopping on the electronic structure of cuprates
Photoemission spectra of underdoped and lightly-doped
BiPbSrCa{\it R}CuO ( Pr, Er)
(BSCCO) have been measured and compared with those of LaSrCuO
(LSCO). The lower-Hubbard band of the insulating BSCCO, like
CaCuOCl, shows a stronger dispersion than LaCuO from () to (). The flat band at () is found generally deeper in BSCCO. These observations
together with the Fermi-surface shapes and the chemical potential shifts
indicate that the next-nearest-neighbor hopping of the
single-band model is larger in BSCCO than in LSCO and that
rather than the super-exchange influences the pseudogap energy scale.Comment: 5 pages,4 figures, 1 tabl
Doping dependence of the shadow band in La-based cuprates studied by angle-resolved photoemission spectroscopy
The shadow band (SB) in La-based cuprate family (La214) was
studied by angle-resolved photoemission spectroscopy (ARPES) over a wide doping
range from to . Unlike the well-studied case of the Bi-based
cuprate family, an overall strong, monotonic doping dependence of the SB
intensity at the Fermi level () was observed. In contrast to a previous
report for the presence of the SB only close to , we found it exists in
a wide doping range, associated with a doping-independent wave
vector but strongly doping-dependent intensity: It is the strongest at and systematically diminishes as the doping increases until it becomes
negligible in the overdoped regime. This SB with the observed doping dependence
of intensity can in principle be caused by the antiferromagnetic fluctuations
or a particular form of low-temperature orthorhombic lattice distortion known
to persist up to in the system, with both being weakened with
increasing doping. However, a detailed binding energy dependent analysis of the
SB at does not appear to support the former interpretation, leaving
the latter as a more plausible candidate, despite a challenge in quantitatively
linking the doping dependences of the SB intensity and the magnitude of the
lattice distortion. Our finding highlights the necessity of a careful and
global consideration of the inherent structural complications for correctly
understanding the cuprate Fermiology and its microscopic implication.Comment: Note the revised conclusion and author list; To appear in New J. Phy
Energy dissipation in the time domain governed by bosons in a correlated material
In complex materials various interactions play important roles in determining
the material properties. Angle Resolved Photoelectron Spectroscopy (ARPES) has
been used to study these processes by resolving the complex single particle
self energy and quantifying how quantum interactions modify bare
electronic states. However, ambiguities in the measurement of the real part of
the self energy and an intrinsic inability to disentangle various contributions
to the imaginary part of the self energy often leave the implications of such
measurements open to debate. Here we employ a combined theoretical and
experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) and show
how measuring the population dynamics using tr-ARPES can be used to separate
electron-boson interactions from electron-electron interactions. We demonstrate
the analysis of a well-defined electron-boson interaction in the unoccupied
spectrum of the cuprate BiSrCaCuO characterized by an
excited population decay time constant that maps directly to a
discrete component of the equilibrium self energy not readily isolated by
static ARPES experiments.Comment: 19 pages with 6 figure
Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors
Coupling between electrons and phonons (lattice vibrations) drives the
formation of the electron pairs responsible for conventional superconductivity.
The lack of direct evidence for electron-phonon coupling in the electron
dynamics of the high transition temperature superconductors has driven an
intensive search for an alternative mechanism. A coupling of an electron with a
phonon would result in an abrupt change of its velocity and scattering rate
near the phonon energy. Here we use angle resolved photoemission spectroscopy
to probe electron dynamics -velocity and scattering rate- for three different
families of copper oxide superconductors. We see in all of these materials an
abrupt change of electron velocity at 50-80meV, which we cannot explain by any
known process other than to invoke coupling with the phonons associated with
the movement of the oxygen atoms. This suggests that electron-phonon coupling
strongly influences the electron dynamics in the high-temperature
superconductors, and must therefore be included in any microscopic theory of
superconductivity.Comment: 14 pages, 4 figure
Angle-resolved photoemission study of insulating and metallic Cu-O chains in PrBaCuO and PrBaCuO
We compare the angle-resolved photoemission spectra of the hole-doped Cu-O
chains in PrBaCuO (Pr123) and in PrBaCuO (Pr124).
While, in Pr123, a dispersive feature from the chain takes a band maximum at
(momentum along the chain) and loses its spectral weight
around the Fermi level, it reaches the Fermi level at in
Pr124. Although the chains in Pr123 and Pr124 are approximately 1/4-filled,
they show contrasting behaviors: While the chains in Pr123 have an instability
to charge ordering, those in Pr124 avoid it and show an interesting spectral
feature of a metallic coupled-chain system.Comment: 4 pages, 5 figures, to be published in PR
Projectile fragmentation reactions and production of nuclei near the neutron drip-line
The reaction mechanism of projectile fragmentation at intermediate energies
has been investigated observing the target dependence of the production cross
sections of very neutron-rich nuclei. Measurement of longitudinal momentum
distributions of projectile-like fragments within a wide range of fragment mass
and its charge was performed using a hundred-MeV/n Ar beam incident on
Be and Ta targets. By measurement of fragment momentum distribution, a
parabolic mass dependence of momentum peak shift was observed in the results of
both targets, and a phenomenon of light-fragment acceleration was found only in
the Be-target data. The analysis of production cross sections revealed an
obvious enhancement of the target dependence except target size effect when the
neutron excess is increased. This result implies the breakdown of factorization
(BOF) of production cross sections for very neutron-rich nuclei near the drip
line.Comment: 16 pages, 18 figures, submitted to Phys. Rev.
Spin ice in a field: quasi-phases and pseudo-transitions
Thermodynamics of the short-range model of spin ice magnets in a field is
considered in the Bethe - Peierls approximation. The results obtained for
[111], [100] and [011] fields agrees reasonably well with the existing
Monte-Carlo simulations and some experiments. In this approximation all
extremely sharp field-induced anomalies are described by the analytical
functions of temperature and applied field. In spite of the absence of true
phase transitions the analysis of the entropy and specific heat reliefs over
H-T plane allows to discern the "pseudo-phases" with specific character of spin
fluctuations and define the lines of more or less sharp "pseudo-transitions"
between them.Comment: 18 pages, 16 figure
- …
