186,193 research outputs found
Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole
In this paper, we extend Parikh' work to the non-stationary black hole. As an
example of the non-stationary black hole, we study the tunnelling effect and
Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its
mass parameter. We view Hawking radiation as a tunnelling process across the
event horizon and calculate the tunnelling probability. We find that the result
is different from Parikh's work because is the function of
Bondi mass m(v)
Earthquake source parameters of the 2009 Mw 7.8 Fiordland (New Zealand) earthquake from L-band InSAR observations
The 2009 MW7.8 Fiordland (New Zealand) earthquake is the largest to have occurred in New Zealand since the 1931 Mw 7.8 Hawke’s Bay earthquake, 1 000 km to the northwest. In this paper two tracks of ALOS PALSAR interferograms (one ascending and one descending) are used to determine fault geometry and slip distribution of this large earthquake. Modeling the event as dislocation in an elastic half-space suggests that the earthquake resulted from slip on a SSW-NNE orientated thrust fault that is associated with the subduction between the Pacific and Australian Plates, with oblique displacement of up to 6.3 m. This finding is consistent with the preliminary studies undertaken by the USGS using seismic data
Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes
To help reveal the complete picture of linear kinetic drift modes, four
independent numerical approaches, based on integral equation, Euler initial
value simulation, Euler matrix eigenvalue solution and Lagrangian particle
simulation, respectively, are used to solve the linear gyrokinetic
electrostatic drift modes equation in Z-pinch with slab simplification and in
tokamak with ballooning space coordinate. We identify that these approaches can
yield the same solution with the difference smaller than 1\%, and the
discrepancies mainly come from the numerical convergence, which is the first
detailed benchmark of four independent numerical approaches for gyrokinetic
linear drift modes. Using these approaches, we find that the entropy mode and
interchange mode are on the same branch in Z-pinch, and the entropy mode can
have both electron and ion branches. And, at strong gradient, more than one
eigenstate of the ion temperature gradient mode (ITG) can be unstable and the
most unstable one can be on non-ground eigenstates. The propagation of ITGs
from ion to electron diamagnetic direction at strong gradient is also observed,
which implies that the propagation direction is not a decisive criterion for
the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma
- …
