5,734 research outputs found
An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL
An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy
Competing magnetic fluctuations in Sr3Ru2O7 probed by Ti doping
We report the effect of nonmagnetic Ti4+ impurities on the electronic and
magnetic properties of Sr3Ru2O7. Small amounts of Ti suppress the
characteristic peak in magnetic susceptibility near 16 K and result in a sharp
upturn in specific heat. The metamagnetic quantum phase transition and related
anomalous features are quickly smeared out by small amounts of Ti. These
results provide strong evidence for the existence of competing magnetic
fluctuations in the ground state of Sr3Ru2O7. Ti doping suppresses the low
temperature antiferromagnetic interactions that arise from Fermi surface
nesting, leaving the system in a state dominated by ferromagnetic fluctuations.Comment: 5 pages, 4 figures, 1 tabl
Solubility isotope effects in aqueous solutions of methane
The isotope effect on the Henry's law coefficients of methane in
aqueous solution (H/D and C-12/C-13 substitution) are interpreted using
the statistical mechanical theory of condensed phase isotope effects.
The missing spectroscopic data needed for the implementation of the
theory were obtained either experimentally (infrared measurements), by
computer simulation (molecular dynamics technique), or estimated using
the Wilson's GF matrix method. The order of magnitude and sign of both
solute isotope effects can be predicted by the theory. Even a crude
estimation based on data from previous vapor pressure isotope effect
studies of pure methane at low temperature can explain the inverse
effect found for the solubility of deuterated methane in water. (C)
2002 American Institute of Physics
Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes
In this paper we address the problem of multiple camera calibration in the
presence of a homogeneous scene, and without the possibility of employing
calibration object based methods. The proposed solution exploits salient
features present in a larger field of view, but instead of employing active
vision we replace the cameras with stereo rigs featuring a long focal analysis
camera, as well as a short focal registration camera. Thus, we are able to
propose an accurate solution which does not require intrinsic variation models
as in the case of zooming cameras. Moreover, the availability of the two views
simultaneously in each rig allows for pose re-estimation between rigs as often
as necessary. The algorithm has been successfully validated in an indoor
setting, as well as on a difficult scene featuring a highly dense pilgrim crowd
in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application
Photoluminescence and photoluminescence excitation studies of lateral size effects in Zn_{1-x}Mn_xSe/ZnSe quantum disc samples of different radii
Quantum disc structures (with diameters of 200 nm and 100 nm) were prepared
from a Zn_{0.72}Mn_{0.28}Se/ZnSe single quantum well structure by electron beam
lithography followed by an etching procedure which combined dry and wet etching
techniques. The quantum disc structures and the parent structure were studied
by photoluminescence and photoluminescence excitation spectroscopy. For the
light-hole excitons in the quantum well region, shifts of the energy positions
are observed following fabrication of the discs, confirming that strain
relaxation occurs in the pillars. The light-hole exciton lines also sharpen
following disc fabrication: this is due to an interplay between strain effects
(related to dislocations) and the lateral size of the discs. A further
consequence of the small lateral sizes of the discs is that the intensity of
the donor-bound exciton emission from the disc is found to decrease with the
disc radius. These size-related effects occur before the disc radius is reduced
to dimensions necessary for lateral quantum confinement to occur but will
remain important when the discs are made small enough to be considered as
quantum dots.Comment: LaTeX2e, 13 pages, 6 figures (epsfig
Evaluation of Ablation Patterns Using a Biophysical Model of Atrial Fibrillation
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia. Surgical/Radiofrequency (RF) ablation is a therapeutic procedure that consists of creating lines of conduction block to interrupt AF. The present study evaluated 13 different ablation patterns by means of a biophysical model of the human atria. In this model, ablation lines were abruptly applied transmurally during simulated sustained AF, and success rate, time to AF termination and average beat-to-beat interval were documented. The gold standard Cox's Maze III procedure was taken as reference. The effectiveness of twelve less invasive patterns was compared to it. In some of these incomplete lines (entailing a gap) were simulated. Finally, the computer simulations were compared to clinical data. The results show that the model reproduces observations made in vivo: (1) the Maze III is the most efficient ablation procedure; (2) less invasive patterns should include lines in both right and left atrium; (3) incomplete ablation lines between the pulmonary veins and the mitral valve annulus lead to uncommon flutter; (4) computer simulations of incomplete lines are consistent with clinical results of non-transumural RF ablation. Biophysical modeling may therefore be considered as a useful tool for understanding the mechanisms underlying AF therapie
A Unified Quantum NOT Gate
We study the feasibility of implementing a quantum NOT gate (approximate)
when the quantum state lies between two latitudes on the Bloch's sphere and
present an analytical formula for the optimized 1-to- quantum NOT gate. Our
result generalizes previous results concerning quantum NOT gate for a quantum
state distributed uniformly on the whole Bloch sphere as well as the phase
covariant quantum state. We have also shown that such 1-to- optimized NOT
gate can be implemented using a sequential generation scheme via matrix product
states (MPS)
Bounded Verification with On-the-Fly Discrepancy Computation
Simulation-based verification algorithms can provide formal safety guarantees
for nonlinear and hybrid systems. The previous algorithms rely on user provided
model annotations called discrepancy function, which are crucial for computing
reachtubes from simulations. In this paper, we eliminate this requirement by
presenting an algorithm for computing piece-wise exponential discrepancy
functions. The algorithm relies on computing local convergence or divergence
rates of trajectories along a simulation using a coarse over-approximation of
the reach set and bounding the maximal eigenvalue of the Jacobian over this
over-approximation. The resulting discrepancy function preserves the soundness
and the relative completeness of the verification algorithm. We also provide a
coordinate transformation method to improve the local estimates for the
convergence or divergence rates in practical examples. We extend the method to
get the input-to-state discrepancy of nonlinear dynamical systems which can be
used for compositional analysis. Our experiments show that the approach is
effective in terms of running time for several benchmark problems, scales
reasonably to larger dimensional systems, and compares favorably with respect
to available tools for nonlinear models.Comment: 24 page
Quantised Vortices in an Exciton-Polariton Fluid
One of the most striking quantum effects in a low temperature interacting
Bose gas is superfluidity. First observed in liquid 4He, this phenomenon has
been intensively studied in a variety of systems for its amazing features such
as the persistence of superflows and the quantization of the angular momentum
of vortices. The achievement of Bose-Einstein condensation (BEC) in dilute
atomic gases provided an exceptional opportunity to observe and study
superfluidity in an extremely clean and controlled environment. In the solid
state, Bose-Einstein condensation of exciton polaritons has now been reported
several times. Polaritons are strongly interacting light-matter
quasi-particles, naturally occurring in semiconductor microcavities in the
strong coupling regime and constitute a very interesting example of composite
bosons. Even though pioneering experiments have recently addressed the
propagation of a fluid of coherent polaritons, still no conclusive evidence is
yet available of its superfluid nature. In the present Letter, we report the
observation of spontaneous formation of pinned quantised vortices in the
Bose-condensed phase of a polariton fluid by means of phase and amplitude
imaging. Theoretical insight into the possible origin of such vortices is
presented in terms of a generalised Gross-Pitaevskii equation. The implications
of our observations concerning the superfluid nature of the non-equilibrium
polariton fluid are finally discussed.Comment: 14 pages, 4 figure
New Family of Robust 2D Topological Insulators in van der Waals Heterostructures
We predict a new family of robust two-dimensional (2D) topological insulators
in van der Waals heterostructures comprising graphene and chalcogenides BiTeX
(X=Cl, Br and I). The layered structures of both constituent materials produce
a naturally smooth interface that is conducive to proximity induced new
topological states. First principles calculations reveal intrinsic
topologically nontrivial bulk energy gaps as large as 70-80 meV, which can be
further enhanced up to 120 meV by compression. The strong spin-orbit coupling
in BiTeX has a significant influence on the graphene Dirac states, resulting in
the topologically nontrivial band structure, which is confirmed by calculated
nontrivial Z2 index and an explicit demonstration of metallic edge states. Such
heterostructures offer an unique Dirac transport system that combines the 2D
Dirac states from graphene and 1D Dirac edge states from the topological
insulator, and it offers new ideas for innovative device designs
- …
