166,906 research outputs found
Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse
Using multi-dimensional particle-in-cell (PIC) simulations we study ion
acceleration from a foil irradiated by a circularly polarized laser pulse at
1022W/cm^2 intensity. When the foil is shaped initially in the transverse
direction to match the laser intensity profile, the center part of the target
can be uniformly accelerated for a longer time compared to a usual flat target.
Target deformation and undesirable plasma heating are effectively suppressed.
The final energy spectrum of the accelerated ion beam is improved dramatically.
Collimated GeV quasi-mono-energetic ion beams carrying as much as 18% of the
laser energy are observed in multi-dimensional simulations. Radiation damping
effects are also checked in the simulations.Comment: 4 pages, 4 figure
Investigation of the energy dependence of the orbital light curve in LS 5039
LS 5039 is so far the best studied -ray binary system at
multi-wavelength energies. A time resolved study of its spectral energy
distribution (SED) shows that above 1 keV its power output is changing along
its binary orbit as well as being a function of energy. To disentangle the
energy dependence of the power output as a function of orbital phase, we
investigated in detail the orbital light curves as derived with different
telescopes at different energy bands. We analysed the data from all existing
\textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most
up-to-date orbital light curves at hard X-ray energies. In the -ray
band, we carried out orbital phase-resolved analysis of \textit{Fermi}-LAT data
between 30 MeV and 10 GeV in 5 different energy bands. We found that, at
100 MeV and 1 TeV the peak of the -ray emission is
near orbital phase 0.7, while between 100 MeV and 1 GeV it moves
close to orbital phase 1.0 in an orbital anti-clockwise manner. This result
suggests that the transition region in the SED at soft -rays (below a
hundred MeV) is related to the orbital phase interval of 0.5--1.0 but not to
the one of 0.0--0.5, when the compact object is "behind" its companion. Another
interesting result is that between 3 and 20 GeV no orbital modulation is found,
although \textit{Fermi}-LAT significantly (18) detects LS 5039.
This is consistent with the fact that at these energies, the contributions to
the overall emission from the inferior conjunction phase region (INFC, orbital
phase 0.45 to 0.9) and from the superior conjunction phase region (SUPC,
orbital phase 0.9 to 0.45) are equal in strength. At TeV energies the power
output is again dominant in the INFC region and the flux peak occurs at phase
0.7.Comment: 7 pages, 6 figures, accepted for publication in MNRA
Effect of nonlinear filters on detrended fluctuation analysis
We investigate how various linear and nonlinear transformations affect the
scaling properties of a signal, using the detrended fluctuation analysis (DFA).
Specifically, we study the effect of three types of transforms: linear,
nonlinear polynomial and logarithmic filters. We compare the scaling properties
of signals before and after the transform. We find that linear filters do not
change the correlation properties, while the effect of nonlinear polynomial and
logarithmic filters strongly depends on (a) the strength of correlations in the
original signal, (b) the power of the polynomial filter and (c) the offset in
the logarithmic filter. We further investigate the correlation properties of
three analytic functions: exponential, logarithmic, and power-law. While these
three functions have in general different correlation properties, we find that
there is a broad range of variable values, common for all three functions,
where they exhibit identical scaling behavior. We further note that the scaling
behavior of a class of other functions can be reduced to these three typical
cases. We systematically test the performance of the DFA method in accurately
estimating long-range power-law correlations in the output signals for
different parameter values in the three types of filters, and the three
analytic functions we consider.Comment: 12 pages, 7 figure
Global analysis of quadrupole shape invariants based on covariant energy density functionals
Coexistence of different geometric shapes at low energies presents a
universal structure phenomenon that occurs over the entire chart of nuclides.
Studies of the shape coexistence are important for understanding the
microscopic origin of collectivity and modifications of shell structure in
exotic nuclei far from stability. The aim of this work is to provide a
systematic analysis of characteristic signatures of coexisting nuclear shapes
in different mass regions, using a global self-consistent theoretical method
based on universal energy density functionals and the quadrupole collective
model. The low-energy excitation spectrum and quadrupole shape invariants of
the two lowest states of even-even nuclei are obtained as solutions of
a five-dimensional collective Hamiltonian (5DCH) model, with parameters
determined by constrained self-consistent mean-field calculations based on the
relativistic energy density functional PC-PK1, and a finite-range pairing
interaction. The theoretical excitation energies of the states: ,
, , , , as well as the
values, are in very good agreement with the corresponding experimental values
for 621 even-even nuclei. Quadrupole shape invariants have been implemented to
investigate shape coexistence, and the distribution of possible
shape-coexisting nuclei is consistent with results obtained in recent
theoretical studies and available data. The present analysis has shown that,
when based on a universal and consistent microscopic framework of nuclear
density functionals, shape invariants provide distinct indicators and reliable
predictions for the occurrence of low-energy coexisting shapes. This method is
particularly useful for studies of shape coexistence in regions far from
stability where few data are available.Comment: 13 pages, 3 figures, accepted for publication in Phys. Rev.
Pentaquark Magnetic Moments In Different Models
We calculate the magnetic moments of the pentaquark states from different
models and compare our results with predictions of other groups.Comment: 17 pages, no figur
- …
