41,164 research outputs found
A dimerized spin fluid in a one-dimensional electron system
The ground state of a one-dimensional Hubbard model with a bond-charge
attraction W term at half-filling is investigated by the density matrix
renormalization group method. It is confirmed that the spin gap will be closed
at U>8W. But the long-range bond order wave survives even when the spin gap is
closed. It indicates that the ground state is a novel dimerized spin fluid at
U>8W. By a charge-spin transformation, it is shown that there should be a
dimerized metallic phase at U<-8W. Furthermore, it is found that the Hubbard
interaction U enhances initially the dimerization for a weak bond charge
attraction W whereas it reduces monotonously the dimerization for a stronger
bond charge attraction W.Comment: 10 pages, 3 figure
Study of the ionic Peierls-Hubbard model using density matrix renormalization group methods
Density matrix renormalization group methods are used to investigate the
quantum phase diagram of a one-dimensional half-filled ionic Hubbard model with
bond-charge attraction, which can be mapped from the Su-Schrieffer-Heeger-type
electron-phonon coupling at the antiadiabatic limit. A bond order wave
(dimerized) phase which separates the band insulator from the Mott insulator
always exists as long as electron-phonon coupling is present. This is
qualitatively different from that at the adiabatic limit. Our results indicate
that electron-electron interaction, ionic potential and quantum phonon
fluctuations combine in the formation of the bond-order wave phase
Levinson's theorem for the Schr\"{o}dinger equation in two dimensions
Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically
symmetric potential in two dimensions is re-established by the Sturm-Liouville
theorem. The critical case, where the Schr\"{o}dinger equation has a finite
zero-energy solution, is analyzed in detail. It is shown that, in comparison
with Levinson's theorem in non-critical case, the half bound state for
wave, in which the wave function for the zero-energy solution does not decay
fast enough at infinity to be square integrable, will cause the phase shift of
wave at zero energy to increase an additional .Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email:
[email protected], [email protected]
Biophysical controls on light response of net CO<inf>2</inf>exchange in a winter wheat field in the North China Plain
To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE), CO2 flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (Pmax) was 46.6±4.0 μmol CO2 m-2 s-1 and initial light use efficiency (α) 0.059±0.006 μmol μmol-1 in April-May, two or three times as high as those in March. Stepwise multiple linear regressions showed that Pmax increased with the increase in leaf area index (LAI), canopy conductance (gc) and air temperature (Ta) but declined with increasing vapor pressure deficit (VPD) (P25°C or VPD>1.1-1.3 kPa, NEE residual increased with the increase in Ta and VPD (P<0.001), indicating that temperature and water stress occurred. When gc was more than 14 mm s-1 in March and May and 26 mm s-1 in April, the NEE residuals decline disappeared, or even turned into an increase in gc(P<0.01), implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO2 uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003-2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales. © 2014 Tong et al
Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect
The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating
Kinnersley black hole is investigated by using a method of the generalized
tortoise coordinate transformation. Both the location and temperature of the
event horizon depend on the time and on the angles. They coincide with previous
results, but the thermal radiation spectrum of massless spinor particles
displays a kind of spin-acceleration coupling effect.Comment: 8 pages, no figure, revtex 4.0, revisted version with typesetting
errors and misprint correcte
Electronic correlations and unusual superconducting response in the optical properties of the iron-chalcogenide FeTe0.55Se0.45
The in-plane complex optical properties of the iron-chalcogenide
superconductor FeTe0.55Se0.45 have been determined above and below the critical
temperature Tc = 14 K. At room temperature the conductivity is described by a
weakly-interacting Fermi liquid; however, below 100 K the scattering rate
develops a frequency dependence in the terahertz region, signaling the
increasingly correlated nature of this material. We estimate the dc
conductivity just above Tc to be sigma_dc ~ 3500 Ohm-1cm-1 and the superfluid
density rho_s0 ~ 9 x 10^6 cm-2, which places this material close to the scaling
line rho_s0/8 ~ 8.1 sigma_dc Tc for a BCS dirty-limit superconductor. Below Tc
the optical conductivity reveals two gap features at Delta_1,2 ~ 2.5 and ~ 5.1
meV.Comment: Minor revisions, 5 pages, 4 figure
- …
