217,539 research outputs found

    Theoretical limit of the minimal magnetization switching field and the optimal field pulse for Stoner particles

    Full text link
    The theoretical limit of the minimal magnetization switching field and the optimal field pulse design for uniaxial Stoner particles are investigated. Two results are obtained. One is the existence of a theoretical limit of the smallest magnetic field out of all possible designs. It is shown that the limit is proportional to the damping constant in the weak damping regime and approaches the Stoner-Wohlfarth (SW) limit at large damping. For a realistic damping constant, this limit is more than ten times smaller than that of so-called precessional magnetization reversal under a non-collinear static field. The other is on the optimal field pulse design: If the magnitude of a magnetic field does not change, but its direction can vary during a reversal process, there is an optimal design that gives the shortest switching time. The switching time depends on the field magnitude, damping constant, and magnetic anisotropy. However, the optimal pulse shape depends only on the damping constant.Comment: 4 pages, 4 figure

    Critical current under an optimal time-dependent polarization direction for Stoner particles in spin-transfer torque induced fast magnetization reversal

    Full text link
    Fast magnetization reversal of uniaxial Stoner particles by spin-transfer torque due to the spin-polarized electric current is investigated. It is found that a current with a properly designed time-dependent polarization direction can dramatically reduce the critical current density required to reverse a magnetization. Under the condition that the magnitude and the polarization degree of the current do not vary with time, the shape of the optimal time-dependent polarization direction is obtained such that the magnetization reversal is the fastest.Comment: 4 pages, 3 figure

    Magnetization reversal through synchronization with a microwave

    Full text link
    Based on the Landau-Lifshitz-Gilbert equation, it can be shown that a circularly-polarized microwave can reverse the magnetization of a Stoner particle through synchronization. In comparison with magnetization reversal induced by a static magnetic field, it can be shown that when a proper microwave frequency is used the minimal switching field is much smaller than that of precessional magnetization reversal. A microwave needs only to overcome the energy dissipation of a Stoner particle in order to reverse magnetization unlike the conventional method with a static magnetic field where the switching field must be of the order of magnetic anisotropy.Comment: 4 pages, 5 figure

    Optimal time-dependent polarized current pattern for fast domain wall propagation in nanowires: Exact solutions for biaxial and uniaxial anisotropies

    Get PDF
    One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive the optimal spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as ten times compared to the velocities achieved in experiments so far. Moreover, the fast variation of spin polarization can help DW depinning. Possible experimental realizations are discussed.Comment: 4 pages, 1 figur

    Effect of carrot puree edible films on quality preservation of fresh-cut carrots

    Get PDF
    peer-reviewedFinancial support from the high level talent fund of Henan University of Technology Science and Technology (No. 2012BS024) is gratefully acknowledged.The effect of edible films based on carrot puree, chitosan, corn starch, gelatin, glycerol and cinnamaldehyde on fresh-cut carrots was studied during storage. Several parameters, such as firmness, colour, weight loss, total carotenoids, total phenols, polyphenol oxidase (PPO) activity and peroxidase (POD) activity in coated carrots were determined at regular intervals and then compared with the uncoated carrots throughout the storage period. Significant and expected changes were observed in all carrot samples that were compared. The coating treatment significantly (P < 0.05) delayed the senescence, reduced the deterioration of exterior quality and retained total carotenoids well compared with control (P < 0.05). In addition, significant inhibition of PPO activity (P < 0.05) and POD activity (P < 0.05) as well as reduced accumulation of polyphenols (P < 0.05) were observed for all coated samples. All of these favourable responses induced by coating treatment on minimally processed fresh-cut carrots showed beneficial physiological effects, which would give some useful references to the fresh-cut fruit and vegetable processing industry and satisfy people’s requirements allowing for extending product shelf life without negatively affecting the sensory quality or acceptability.Henan University of Technology Science and Technolog

    Collapsing and Expanding Cylindrically Symmetric Fields with Ligh-tlike Wave-Fronts in General Relativity

    Get PDF
    The dynamics of collapsing and expanding cylindrically symmetric gravitational and matter fields with lightlike wave-fronts is studied in General Relativity, using the Barrabes-Israel method. As an application of the general formulae developed, the collapse of a matter field that satisfies the condition R_{AB}g^{AB} = 0, (A, B = z, phi), in an otherwise flat spacetime background is studied. In particular, it is found that the gravitational collapse of a purely gravitational wave or a null dust fluid cannot be realized in a flat spacetime background. The studies are further specified to the collapse of purely gravitational waves and the general conditions for such collapse are found. It is shown that after the waves arrive at the axis, in general, part of them is reflected to spacelike infinity along the future light cone, and part of it is focused to form spacetime singularities on the symmetry axis. The cases where the collapse does not result in the formation of spacetime singularities are also identified.Comment: 3 figures, prepared in Latex. Inter. J. Mod. Phys. D11, 561-579 (2002
    corecore