205,848 research outputs found

    Spatiotemporal Patterns and Predictability of Cyberattacks

    Get PDF
    Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Electromigration dispersion in a capillary in the presence of electro-osmotic flow

    Full text link
    The differential migration of ions in an applied electric field is the basis for separation of chemical species by capillary electrophoresis. Axial diffusion of the concentration peak limits the separation efficiency. Electromigration dispersion is observed when the concentration of sample ions is comparable to that of the background ions. Under such conditions, the local electrical conductivity is significantly altered in the sample zone making the electric field, and therefore, the ion migration velocity concentration dependent. The resulting nonlinear wave exhibits shock like features, and, under certain simplifying assumptions, is described by Burgers' equation (S. Ghosal and Z. Chen Bull. Math. Biol. 2010, vol.72, pg. 2047).In this paper, we consider the more general situation where the walls of the separation channel may have a non-zero zeta potential and are therefore able to sustain an electro-osmotic bulk flow. The main result is a one dimensional nonlinear advection diffusion equation for the area averaged concentration. This homogenized equation accounts for the Taylor-Aris dispersion resulting from the variation in the electro-osmotic slip velocity along the wall. It is shown that in a certain range of parameters, the electro-osmotic flow can actually reduce the total dispersion by delaying the formation of a concentration shock. However, if the electro-osmotic flow is sufficiently high, the total dispersion is increased because of the Taylor-Aris contribution.Comment: 19 pages, 5 figure

    Effect of spin-orbit interaction on heterojunction band discontinuities

    Get PDF
    The effect of spin-orbit interaction is included in the linear combination of atomic orbitals calculation of heterojunction band discontinuities. It is found that spin-orbit interaction is not negligible when the atomic number of the constituent atoms exceeds about 40. The effect of spin-orbit interaction as well as some interesting observations and their implications are briefly discussed

    Diagnostics of macroscopic quantum states of Bose-Einstein condensate in double-well potential by nonstationary Josephson effect

    Get PDF
    We propose a method of diagnostic of a degenerate ground state of Bose condensate in a double well potential. The method is based on the study of the one-particle coherent tunneling under switching the time-dependent weak Josephson coupling between the wells. We obtain a simple expression that allows to determine the phase of the condensate and the total number of the particles in the condensate from the relative number of the particles in two wells Δn=n1n2\Delta n =n_1-n_2 measured before the Josephson coupling is switched on and after it is switched off. The specifics of the application of the method in the cases of the external and the internal Josephson effect are discussed.Comment: 3 page

    Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory

    Full text link
    Five-dimensional collective Hamiltonian based on the covariant density functional theory has been applied to study the the low-lying states of even-even 148162^{148-162}Gd isotopes. The shape evolution from 148^{148}Gd to 162^{162}Gd is presented. The experimental energy spectra and intraband B(E2)B(E2) transition probabilities for the 148162^{148-162}Gd isotopes are reproduced by the present calculations. The relative B(E2)B(E2) ratios in present calculations are also compared with the available interacting boson model results and experimental data. It is found that the occupations of neutron 1i13/21i_{13/2} orbital result in the well-deformed prolate shape, and are essential for Gd isotopes.Comment: 11pages, 10figure

    Shell-model-like approach based on cranking covariant density functional theory: bandcrossing and shape evolution in 60^{60}Fe

    Full text link
    The shell-model-like approach is implemented to treat the cranking many-body Hamiltonian based on the covariant density functional theory including pairing correlations with exact particle number conservation. The self-consistency is achieved by iterating the single-particle occupation probabilities back to the densities and currents. As an example, the rotational structures observed in the neutron-rich nucleus 60^{60}Fe are investigated and analyzed. Without introducing any \emph{ad hoc} parameters, the bandheads, the rotational spectra, and the relations between the angular momentum and rotational frequency for the positive parity band A, and negative parity bands B and C are well reproduced. The essential role of the pairing correlations is revealed. It is found that for band A, the bandcrossing is due to the change of the last two occupied neutrons from the 1f5/21f_{5/2} signature partners to the 1g9/21g_{9/2} signature partners. For the two negative parity signature partner bands B and C, the bandcrossings are due to the pseudo-crossing between the 1f7/2, 5/21f_{7/2,~5/2} and the 1f5/2, 1/21f_{5/2,~1/2} orbitals. Generally speaking, the deformation parameters β\beta for bands A, B, and C decrease with rotational frequency. For band A, the deformation jumps from β0.19\beta\sim0.19 to β0.29\beta\sim0.29 around the bandcrossing. In comparison with its signature partner band C, band B exhibits appreciable triaxial deformation
    corecore