37,857 research outputs found
Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film
We report the tunability of the exchange bias effect by the first-order
metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5
nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey
transition, the exchange bias field is substantially enhanced because of a
sharp increase in magnetocrystalline anisotropy constant from high-temperature
cubic to lowtemperature monoclinic structure. Moreover, with respect to the
Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4
(40 nm)/MgO (001) bilayer is greatly increased for all the temperature range,
which would be due to the coupling between Co spins and Fe spins across the
interface
A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus
We present a multiwavelength study of an atypical submillimeter galaxy in the
GOODS-North field, with the aim to understand its physical properties of
stellar and dust emission, as well as the central AGN activity. Although it is
shown that the source is likely an extremely dusty galaxy at high redshift, its
exact position of submillimeter emission is unknown. With the new NOEMA
interferometric imaging, we confirm that the source is a unique dusty galaxy.
It has no obvious counterpart in the optical and even NIR images observed with
HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust
SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot
be fully ruled out (at 90% confidence interval). Explaining its unusual
optical-to-NIR properties requires an old stellar population (~0.67 Gyr),
coexisting with a very dusty ongoing starburst component. The latter is
contributing to the FIR emission, with its rest-frame UV and optical light
being largely obscured along our line of sight. If the observed fluxes at the
rest-frame optical/NIR wavelengths were mainly contributed by old stars, a
total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral
analysis suggests that this galaxy harbors a heavily obscured AGN with
N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44
erg/s, which places this object among distant type 2 quasars. The radio
emission of the source is extremely bright, which is an order of magnitude
higher than the star-formation-powered emission, making it one of the most
distant radio-luminous dusty galaxies. The combined characteristics of the
galaxy suggest that the source appears to have been caught in a rare but
critical transition stage in the evolution of submillimeter galaxies, where we
are witnessing the birth of a young AGN and possibly the earliest stage of its
jet formation and feedback.Comment: 13 pages in printer format, 10 figures, 1 table, accepted for
publication in the A&
The baryon loading effect on relativistic astrophysical jet transport in the interstellar medium
The composition of the astrophysical relativistic jets remains uncertain. By
kinetic particle-in-cell simulations, we show that the baryon component in the
jet, or the so-called baryon loading effect (BLE), heavily affects relativistic
jets transport dynamics in the interstellar medium. On the one hand, with the
BLE, relativistic jets can transport in a much longer distance, because jet
electrons draw a significant amount of energy from jet baryons via the
Buneman-induced electrostatic waves and the Weibel-mediated collisionless
shock; on the other hand, the jet electron phase space distribution may
transform from a bottom-wide-single-peak structure to a
center-wide-multiple-peak one by increasing the BLE, which largely influences
the observed jet morphology. Implications for related astrophysical studies are
also discussed
Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene
From the perspective of bond relaxation and vibration, we have reconciled the
Raman shifts of graphene under the stimuli of the number-of-layer,
uni-axial-strain, pressure, and temperature in terms of the response of the
length and strength of the representative bond of the entire specimen to the
applied stimuli. Theoretical unification of the measurements clarifies that:
(i) the opposite trends of Raman shifts due to number-of-layer reduction
indicate that the G-peak shift is dominated by the vibration of a pair of atoms
while the D- and the 2D-peak shifts involves z-neighbor of a specific atom;
(ii) the tensile strain-induced phonon softening and phonon-band splitting
arise from the asymmetric response of the C3v bond geometry to the C2v
uni-axial bond elongation; (iii) the thermal-softening of the phonons
originates from bond expansion and weakening; and (iv) the pressure- stiffening
of the phonons results from bond compression and work hardening. Reproduction
of the measurements has led to quantitative information about the referential
frequencies from which the Raman frequencies shift, the length, energy, force
constant, Debye temperature, compressibility, elastic modulus of the C-C bond
in graphene, which is of instrumental importance to the understanding of the
unusual behavior of graphene
- …
