3,057 research outputs found
Sunspot rotation, filament, and flare: The event on 2000 February 10
We find that a sunspot with positive polarity had an obvious
counter-clockwise rotation and resulted in the formation and eruption of an
inverse S-shaped filament in NOAA active region (AR) 08858 from 2000 February 9
to 10. The sunspot had two umbrae which rotated around each other by 195
degrees within about twenty-four hours. The average rotation rate was nearly 8
degrees per hour. The fastest rotation in the photosphere took place during
14:00UT to 22:01UT on February 9, with the rotation rate of nearly 16 degrees
per hour. The fastest rotation in the chromosphere and the corona took place
during 15:28UT to 19:00UT on February 9, with the rotation rate of nearly 20
degrees per hour. Interestingly, the rapid increase of the positive magnetic
flux just occurred during the fastest rotation of the rotating sunspot, the
bright loop-shaped structure and the filament. During the sunspot rotation, the
inverse S-shaped filament gradually formed in the EUV filament channel. The
filament experienced two eruptions. In the first eruption, the filament rose
quickly and then the filament loops carrying the cool and the hot material were
seen to spiral into the sunspot counterclockwise. About ten minutes later, the
filament became active and finally erupted. The filament eruption was
accompanied with a C-class flare and a halo coronal mass ejection (CME). These
results provide evidence that sunspot rotation plays an important role in the
formation and eruption of the sigmoidal active-region filament.Comment: 20 pages, 9 figures, Accepted for publication in Ap
Rap1-mediated nuclear factor-kappaB (NF-κB) activity regulates the paracrine capacity of mesenchymal stem cells in heart repair following infarction
published_or_final_versio
Svestka's Research: Then and Now
Zdenek Svestka's research work influenced many fields of solar physics,
especially in the area of flare research. In this article I take five of the
areas that particularly interested him and assess them in a "then and now"
style. His insights in each case were quite sound, although of course in the
modern era we have learned things that he could not readily have envisioned.
His own views about his research life have been published recently in this
journal, to which he contributed so much, and his memoir contains much
additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour
of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a
contribution to a Topical Issue in Solar Physics, based on the presentations
at this meeting (Editors Lyndsay Fletcher and Petr Heinzel
Mid-infrared plasmons in scaled graphene nanostructures
Plasmonics takes advantage of the collective response of electrons to
electromagnetic waves, enabling dramatic scaling of optical devices beyond the
diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns)
plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100
times smaller than the on-resonance light wavelength in free space. We reveal,
for the first time, the crucial damping channels of graphene plasmons via its
intrinsic optical phonons and scattering from the edges. A plasmon lifetime of
20 femto-seconds and smaller is observed, when damping through the emission of
an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2
substrate underneath the graphene nanostructures lead to a significantly
modified plasmon dispersion and damping, in contrast to a non-polar
diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the
plasmon resonance frequencies are close to the polar phonon frequencies. Our
study paves the way for applications of graphene in plasmonic waveguides,
modulators and detectors in an unprecedentedly broad wavelength range from
sub-terahertz to mid-infrared.Comment: submitte
Triggering an eruptive flare by emerging flux in a solar active-region complex
A flare and fast coronal mass ejection originated between solar active
regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in
front of the leading sunspot of the trailing region 11515. Analyzing the
evolution of the photospheric magnetic flux and the coronal structure, we find
that the flux emergence triggered the eruption by interaction with overlying
flux in a non-standard way. The new flux neither had the opposite orientation
nor a location near the polarity inversion line, which are favorable for strong
reconnection with the arcade flux under which it emerged. Moreover, its flux
content remained significantly smaller than that of the arcade (approximately
40 %). However, a loop system rooted in the trailing active region ran in part
under the arcade between the active regions, passing over the site of flux
emergence. The reconnection with the emerging flux, leading to a series of jet
emissions into the loop system, caused a strong but confined rise of the loop
system. This lifted the arcade between the two active regions, weakening its
downward tension force and thus destabilizing the considerably sheared flux
under the arcade. The complex event was also associated with supporting
precursor activity in an enhanced network near the active regions, acting on
the large-scale overlying flux, and with two simultaneous confined flares
within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and
Stellar Flares. 25 pages, 12 figure
Tri-bimaximal mixing, discrete family symmetries, and a conjecture connecting the quark and lepton mixing matrices
Neutrino oscillation experiments (excluding the LSND experiment) suggest a
tri-bimaximal form for the lepton mixing matrix. This form indicates that the
mixing matrix is probably independent of the lepton masses, and suggests the
action of an underlying discrete family symmetry. Using these hints, we
conjecture that the contrasting forms of the quark and lepton mixing matrices
may both be generated by such a discrete family symmetry. This idea is that the
diagonalisation matrices out of which the physical mixing matrices are composed
have large mixing angles, which cancel out due to a symmetry when the CKM
matrix is computed, but do not do so in the MNS case. However, in the cases
where the Higgs bosons are singlets under the symmetry, and the family symmetry
commutes with SU(2)L, we prove a no-go theorem: no discrete unbroken family
symmetry can produce the required mixing patterns. We then suggest avenues for
future research.Comment: 14 pages, no figures, RevTeX4, references adde
Theoretical and Experimental Studies of Schottky Diodes That Use Aligned Arrays of Single Walled Carbon Nanotubes
We present theoretical and experimental studies of Schottky diodes that use
aligned arrays of single walled carbon nanotubes. A simple physical model,
taking into account the basic physics of current rectification, can adequately
describe the single-tube and array devices. We show that for as grown array
diodes, the rectification ratio, defined by the
maximum-to-minimum-current-ratio, is low due to the presence of m-SWNT shunts.
These tubes can be eliminated in a single voltage sweep resulting in a high
rectification array device. Further analysis also shows that the channel
resistance, and not the intrinsic nanotube diode properties, limits the
rectification in devices with channel length up to ten micrometer.Comment: Nano Research, 2010, accepte
UV friendly T-parity in the SU(6)/Sp(6) little Higgs model
Electroweak precision tests put stringent constraints on the parameter space
of little Higgs models. Tree-level exchange of TeV scale particles in a generic
little Higgs model produce higher dimensional operators that make contributions
to electroweak observables that are typically too large. To avoid this problem
a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous
couplings. However, it was realized that in simple group models such as the
littlest Higgs model, the implementation of T-parity in a UV completion could
present some challenges. The situation is analogous to the one in QCD where the
pion can easily be defined as being odd under a new symmetry in the
chiral Lagrangian, but this is not a symmetry of the quark Lagrangian. In
this paper we examine the possibility of implementing a T-parity in the low
energy model that might be easier to realize in the UV. In our
model, the T-parity acts on the low energy non-linear sigma model field in way
which is different to what was originally proposed for the Littlest Higgs, and
lead to a different low energy theory. In particular, the Higgs sector of this
model is a inert two Higgs doublets model with an approximate custodial
symmetry. We examine the contributions of the various sectors of the model to
electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and
references added. Published in JHE
Relationship between eruptions of active-region filaments and associated flares and CMEs
To better understand the dynamical process of active-region filament
eruptions and associated flares and CMEs, we carried out a statistical study of
120 events observed by BBSO, TRACE, and t(SOHO/EIT) from 1998 to 2007 and
combined filament observations with the NOAA's flare reports, MDI magnetograms,
and LASCO data, to investigate the relationship between active-region filament
eruptions and other solar activities. We found that 115 out of 120 filament
eruptions are associated with flares. 56 out of 105 filament eruptions are
found to be associated with CMEs except for 15 events without corresponding
LASCO data. We note the limitation of coronagraphs duo to geometry or
sensitivity, leading to many smaller CMEs that are Earth-directed or well out
of the plane of sky not being detected by near-Earth spacecraft. Excluding
those without corresponding LASCO data, the CME association rate of
active-region filament eruptions clearly increases with X-ray flare class from
about 32% for C-class flares to 100% for X-class flares. The eruptions of
active-region filaments associated with Halo CMEs are often accompanied by
large flares. About 92% events associated with X-class flare are associated
with Halo CMEs. Such a result is due to that the Earth-directed CMEs detected
as Halo CMEs are often the larger CMEs and many of the smaller ones are not
detected because of the geometry and low intensity. The average speed of the
associated CMEs of filament eruptions increases with X-ray flare size from
563.7 km/s for C-class flares to 1506.6 km/s for X-class flares. Moreover, the
magnetic emergence and cancellation play an important role in triggering
filament eruptions. These findings may be instructive to not only in respect to
the modeling of active-region filament eruptions but also in predicting flares
and CMEs.Comment: 19 Pages, 7 figures, Accepted for publication in MNRA
Measuring the Invisible Higgs Width at the 7 and 8 TeV LHC
The LHC is well on track toward the discovery or exclusion of a light
Standard Model (SM)-like Higgs boson. Such a Higgs has a very small SM width
and can easily have large branching fractions to physics beyond the SM, making
Higgs decays an excellent opportunity to observe new physics. Decays into
collider-invisible particles are particularly interesting as they are
theoretically well motivated and relatively clean experimentally. In this work
we estimate the potential of the 7 and 8 TeV LHC to observe an invisible Higgs
branching fraction. We analyze three channels that can be used to directly
study the invisible Higgs branching ratio at the 7 TeV LHC: an invisible Higgs
produced in association with (i) a hard jet; (ii) a leptonic Z; and (iii)
forward tagging jets. We find that the last channel, where the Higgs is
produced via weak boson fusion, is the most sensitive, allowing branching
fractions as small as 40% to be probed at 20 inverse fb for masses in the range
between 120 and 170 GeV, including in particular the interesting region around
125 GeV. We provide an estimate of the 8 TeV LHC sensitivity to an
invisibly-decaying Higgs produced via weak boson fusion and find that the reach
is comparable to but not better than the reach at the 7 TeV LHC. We further
estimate the discovery potential at the 8 TeV LHC for cases where the Higgs has
substantial branching fractions to both visible and invisible final states.Comment: 23 pages, 7 figures. v2: version published in JHEP. 8 TeV analysis
adde
- …
