61,295 research outputs found

    Electron-positron energy deposition rate from neutrino pair annihilation on the rotation axis of neutron and quark stars

    Full text link
    We investigate the deposition of energy due to the annihilations of neutrinos and antineutrinos on the rotation axis of rotating neutron and quark stars, respectively. The source of the neutrinos is assumed to be a neutrino-cooled accretion disk around the compact object. Under the assumption of the separability of the neutrino null geodesic equation of motion we obtain the general relativistic expression of the energy deposition rate for arbitrary stationary and axisymmetric space-times. The neutrino trajectories are obtained by using a ray tracing algorithm, based on numerically solving the Hamilton-Jacobi equation for neutrinos by reversing the proper time evolution. We obtain the energy deposition rates for several classes of rotating neutron stars, described by different equations of state of the neutron matter, and for quark stars, described by the MIT bag model equation of state and in the CFL (Color-Flavor-Locked) phase, respectively. The electron-positron energy deposition rate on the rotation axis of rotating neutron and quark stars is studied for two accretion disk models (isothermal disk and accretion disk in thermodynamical equilibrium). Rotation and general relativistic effects modify the total annihilation rate of the neutrino-antineutrino pairs on the rotation axis of compact stellar, as measured by an observer at infinity. The differences in the equations of state for neutron and quark matter also have important effects on the spatial distribution of the energy deposition rate by neutrino-antineutrino annihilation.Comment: 38 pages, 9 figures, accepted for publication in MNRA

    Spatiotemporal Patterns and Predictability of Cyberattacks

    Get PDF
    Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Compressing Inertial Motion Data in Wireless Sensing Systems – An Initial Experiment

    Get PDF
    The use of wireless inertial motion sensors, such as accelerometers, for supporting medical care and sport’s training, has been under investigation in recent years. As the number of sensors (or their sampling rates) increases, compressing data at source(s) (i.e. at the sensors), i.e. reducing the quantity of data that needs to be transmitted between the on-body sensors and the remote repository, would be essential especially in a bandwidth-limited wireless environment. This paper presents a set of compression experiment results on a set of inertial motion data collected during running exercises. As a starting point, we selected a set of common compression algorithms to experiment with. Our results show that, conventional lossy compression algorithms would achieve a desirable compression ratio with an acceptable time delay. The results also show that the quality of the decompressed data is within acceptable range

    Possible TeV Source Candidates In The Unidentified EGRET Sources

    Get PDF
    We study the γ\gamma-ray emission from the pulsar magnetosphere based on outer gap models, and the TeV radiation from pulsar wind nebulae (PWNe) through inverse Compton scattering using a one-zone model. We showed previously that GeV radiation from the magnetosphere of mature pulsars with ages of 105106\sim 10^5-10^6 years old can contribute to the high latitude unidentified EGRET sources. We carry out Monte Carlo simulations of γ\gamma-ray pulsars in the Galaxy and the Gould Belt, assuming the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics. We select from the simulation a sample of mature pulsars in the Galactic plane (b5|b|\leq 5^\circ) and in the high latitude (b>5|b|> 5^\circ) which could be detected by EGRET. The TeV flux from the pulsar wind nebulae of our simulated sample through the inverse Compton scattering by relativistic electrons on the microwave cosmic background and synchrotron seed photons are calculated. The predicted fluxes are consistent with the present observational constraints. We suggest that strong EGRET sources can be potential TeV source candidates for present and future ground-based TeV telescopes.Comment: Minor changes, MNRAS in pres

    Measuring dark energy with the EisoEpE_{\rm iso}-E_{\rm p} correlation of gamma-ray bursts using model-independent methods

    Full text link
    In this paper, we use two model-independent methods to standardize long gamma-ray bursts (GRBs) using the EisoEpE_{\rm iso}-E_{\rm p} correlation, where EisoE_{\rm iso} is the isotropic-equivalent gamma-ray energy and EpE_{\rm p} is the spectral peak energy. We update 42 long GRBs and try to make constraint on cosmological parameters. The full sample contains 151 long GRBs with redshifts from 0.0331 to 8.2. The first method is the simultaneous fitting method. The extrinsic scatter σext\sigma_{\rm ext} is taken into account and assigned to the parameter EisoE_{\rm iso}. The best-fitting values are a=49.15±0.26a=49.15\pm0.26, b=1.42±0.11b=1.42\pm0.11, σext=0.34±0.03\sigma_{\rm ext}=0.34\pm0.03 and Ωm=0.79\Omega_m=0.79 in the flat Λ\LambdaCDM model. The constraint on Ωm\Omega_m is 0.55<Ωm<10.55<\Omega_m<1 at the 1σ\sigma confidence level. If reduced χ2\chi^2 method is used, the best-fit results are a=48.96±0.18a=48.96\pm0.18, b=1.52±0.08b=1.52\pm0.08 and Ωm=0.50±0.12\Omega_m=0.50\pm0.12. The second method is using type Ia supernovae (SNe Ia) to calibrate the EisoEpE_{\rm iso}-E_{\rm p} correlation. We calibrate 90 high-redshift GRBs in the redshift range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are Ωm=0.230.04+0.06\Omega_m=0.23^{+0.06}_{-0.04} for flat Λ\LambdaCDM, and Ωm=0.18±0.11\Omega_m=0.18\pm0.11 and ΩΛ=0.46±0.51\Omega_{\Lambda}=0.46\pm0.51 for non-flat Λ\LambdaCDM. For the combination of GRB and SNe Ia sample, we obtain Ωm=0.271±0.019\Omega_m=0.271\pm0.019 and h=0.701±0.002h=0.701\pm0.002 for the flat Λ\LambdaCDM, and for the non-flat Λ\LambdaCDM, the results are Ωm=0.225±0.044\Omega_m=0.225\pm0.044, ΩΛ=0.640±0.082\Omega_{\Lambda}=0.640\pm0.082 and h=0.698±0.004h=0.698\pm0.004. These results from calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined data can improve cosmological constraints significantly, comparing to SNe Ia alone. Our results show that the EisoEpE_{\rm iso}-E_{\rm p} correlation is promising to probe the high-redshift universe.Comment: 10 pages, 6 figures, 4 table, accepted by A&A. Table 4 contains calibrated distance moduli of GRB

    Field study on adaptive thermal comfort in typical air conditioned classrooms

    Get PDF
    This study investigates adaptive thermal comfort in air conditioned classrooms in Hong Kong. A field survey was conducted in several typical classrooms at the City University of Hong Kong. This survey covered objective measurement of thermal environment parameters and subjective human thermal responses. A total of 982 student volunteers participated in the investigation. The results indicate that students in light clothing (0.42 clo) have adapted to the cooler classroom environments. The neutral temperature is very close to the preferred temperature of approximately 24 °C. Based on the MTSV ranging between −0.5 and + 0.5, the comfort range is between 21.56 °C and 26.75 °C. The lower limit is below that of the ASHRAE standard. Of the predicted mean vote (PMV) and the University of California, Berkeley (UCB) model, the UCB model predictions agree better with the mean thermal sensation vote (MTSV). Also, the respective fit regression models of the MTSV versus each of the following: operative temperature (Top), PMV, and UCB were obtained. This study provides a better understanding of acceptable classroom temperatures
    corecore