41,038 research outputs found
General neck condition for the limit shape of budding vesicles
The shape equation and linking conditions for a vesicle with two-phase
domains are derived. We refine the conjecture on the general neck condition for
the limit shape of a budding vesicle proposed by J\"{u}licher and Lipowsky
[Phys. Rev. Lett. \textbf{70}, 2964 (1993); Phys. Rev. E \textbf{53}, 2670
(1996)], and then we use the shape equation and linking conditions to prove
that this conjecture holds not only for axisymmetric budding vesicles, but also
for asymmetric ones. Our study reveals that the mean curvature at any point on
the membrane segments adjacent to the neck satisfies the general neck condition
for the limit shape of a budding vesicle when the length scale of the membrane
segments is much larger than the characteristic size of the neck but still much
smaller than the characteristic size of the vesicle.Comment: 11 pages, 4 figure
Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen
Xenograft rejection of pigs organs with an engineered mutation in the GGTA-1 gene (GTKO) remains a predominantly antibody mediated process which is directed to a variety of non-Gal protein and carbohydrate antigens. We previously used an expression library screening strategy to identify six porcine endothelial cell cDNAs which encode pig antigens that bind to IgG induced after pig-to-primate cardiac xenotransplantation. One of these gene products was a glycosyltransferase with homology to the bovine β1,4 N-acetylgalactosaminyltransferase (B4GALNT2). We now characterize the porcine B4GALNT2 gene sequence, genomic organization, expression, and functional significance
Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach
This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.This work was supported in part by the International Science and Technology
Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant
2009I0016
Robust H∞ feedback control for uncertain stochastic delayed genetic regulatory networks with additive and multiplicative noise
The official published version can found at the link below.Noises are ubiquitous in genetic regulatory networks (GRNs). Gene regulation is inherently a stochastic process because of intrinsic and extrinsic noises that cause kinetic parameter variations and basal rate disturbance. Time delays are usually inevitable due to different biochemical reactions in such GRNs. In this paper, a delayed stochastic model with additive and multiplicative noises is utilized to describe stochastic GRNs. A feedback gene controller design scheme is proposed to guarantee that the GRN is mean-square asymptotically stable with noise attenuation, where the structure of the controllers can be specified according to engineering requirements. By applying control theory and mathematical tools, the analytical solution to the control design problem is given, which helps to provide some insight into synthetic biology and systems biology. The control scheme is employed in a three-gene network to illustrate the applicability and usefulness of the design.This work was funded by Royal Society of the U.K.; Foundation for the Author of National Excellent Doctoral Dissertation of China. Grant Number: 2007E4; Heilongjiang Outstanding Youth Science Fund of China. Grant Number: JC200809; Fok Ying Tung Education Foundation. Grant Number: 111064; International Science and Technology Cooperation Project of China. Grant Number: 2009DFA32050; University of Science and Technology of China Graduate Innovative Foundation
Experimental implementation of high-fidelity unconventional geometric quantum gates using NMR interferometer
Following a key idea of unconventional geometric quantum computation
developed earlier [Phys. Rev. Lett. 91, 197902 (2003)], here we propose a more
general scheme in such an intriguing way: , where and are respectively the dynamic and
geometric phases accumulated in the quantum gate operation, with as a
constant and being dependent only on the geometric feature of the
operation. More arrestingly, we demonstrate the first experiment to implement a
universal set of such kind of generalized unconventional geometric quantum
gates with high fidelity in an NMR system.Comment: 4 pages, 3 figure
Terminal-Set-Enhanced Community Detection in Social Networks
Community detection aims to reveal the community structure in a social
network, which is one of the fundamental problems. In this paper we investigate
the community detection problem based on the concept of terminal set. A
terminal set is a group of users within which any two users belong to different
communities. Although the community detection is hard in general, the terminal
set can be very helpful in designing effective community detection algorithms.
We first present a 2-approximation algorithm running in polynomial time for the
original community detection problem. In the other issue, in order to better
support real applications we further consider the case when extra restrictions
are imposed on feasible partitions. For such customized community detection
problems, we provide two randomized algorithms which are able to find the
optimal partition with a high probability. Demonstrated by the experiments
performed on benchmark networks the proposed algorithms are able to produce
high-quality communities.Comment: INFOCOM 201
A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models
This is the post-print version of the Article. The official published can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, a hybrid extended Kalman filter (EKF) and switching particle swarm optimization (SPSO) algorithm is proposed for jointly estimating both the parameters and states of the lateral flow immunoassay model through available short time-series measurement. Our proposed method generalizes the well-known EKF algorithm by imposing physical constraints on the system states. Note that the state constraints are encountered very often in practice that give rise to considerable difficulties in system analysis and design. The main purpose of this paper is to handle the dynamic modeling problem with state constraints by combining the extended Kalman filtering and constrained optimization algorithms via the maximization probability method. More specifically, a recently developed SPSO algorithm is used to cope with the constrained optimization problem by converting it into an unconstrained optimization one through adding a penalty term to the objective function. The proposed algorithm is then employed to simultaneously identify the parameters and states of a lateral flow immunoassay model. It is shown that the proposed algorithm gives much improved performance over the traditional EKF method.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant
2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant
2009I0016
- …
