7,984 research outputs found
Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment
A Hadron Blind Detector (HBD) has been developed, constructed and
successfully operated within the PHENIX detector at RHIC. The HBD is a
Cherenkov detector operated with pure CF4. It has a 50 cm long radiator
directly coupled in a window- less configuration to a readout element
consisting of a triple GEM stack, with a CsI photocathode evaporated on the top
surface of the top GEM and pad readout at the bottom of the stack. This paper
gives a comprehensive account of the construction, operation and in-beam
performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method
Strong extinction of a far-field laser beam by a single quantum dot
Through the utilization of index-matched GaAs immersion lens techniques we
demonstrate a record extinction (12%) of a far-field focused laser by a single
InAs/GaAs quantum dot. This contrast level enables us to report for the first
time resonant laser transmission spectroscopy on a single InAs/GaAs quantum dot
without the need for phase-sensitive lock-in detection
Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data
We present a measurement of the -mode polarization power spectrum (the
spectrum) from 100 of sky observed with SPTpol, a
polarization-sensitive receiver currently installed on the South Pole
Telescope. The observations used in this work were taken during 2012 and early
2013 and include data in spectral bands centered at 95 and 150 GHz. We report
the spectrum in five bins in multipole space, spanning the range , and for three spectral combinations: 95 GHz 95 GHz, 95
GHz 150 GHz, and 150 GHz 150 GHz. We subtract small ( in units of statistical uncertainty) biases from these spectra and
account for the uncertainty in those biases. The resulting power spectra are
inconsistent with zero power but consistent with predictions for the
spectrum arising from the gravitational lensing of -mode polarization. If we
assume no other source of power besides lensed modes, we determine a
preference for lensed modes of . After marginalizing over
tensor power and foregrounds, namely polarized emission from galactic dust and
extragalactic sources, this significance is . Fitting for a single
parameter, , that multiplies the predicted lensed -mode
spectrum, and marginalizing over tensor power and foregrounds, we find
, indicating that our measured spectra are
consistent with the signal expected from gravitational lensing. The data
presented here provide the best measurement to date of the -mode power
spectrum on these angular scales.Comment: 21 pages, 4 figure
CMB Polarization B-mode Delensing with SPTpol and Herschel
We present a demonstration of delensing the observed cosmic microwave
background (CMB) B-mode polarization anisotropy. This process of reducing the
gravitational-lensing generated B-mode component will become increasingly
important for improving searches for the B modes produced by primordial
gravitational waves. In this work, we delens B-mode maps constructed from
multi-frequency SPTpol observations of a 90 deg patch of sky by subtracting
a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing
potential map estimated from the map of the
CIB. We find that our delensing procedure reduces the measured B-mode power
spectrum by 28% in the multipole range ; this is shown to be
consistent with expectations from theory and simulations and to be robust
against systematics. The null hypothesis of no delensing is rejected at . Furthermore, we build and use a suite of realistic simulations to
study the general properties of the delensing process and find that the
delensing efficiency achieved in this work is limited primarily by the noise in
the lensing potential map. We demonstrate the importance of including realistic
experimental non-idealities in the delensing forecasts used to inform
instrument and survey-strategy planning of upcoming lower-noise experiments,
such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome
Recommended from our members
Measurements of μμ pairs from open heavy flavor and Drell-Yan in p+p collisions at s =200 GeV
PHENIX reports differential cross sections of μμ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in p+p collisions at s=200 GeV at forward and backward rapidity (1.2<|η|<2.2). The μμ pairs from cc, bb, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and pT. The azimuthal opening angle correlation between the muons from cc and bb decays and the pair-pT distributions are compared to distributions generated using pythia and powheg models, which both include next-to-leading order processes. The measured distributions for pairs from cc are consistent with pythia calculations. The cc data present narrower azimuthal correlations and softer pT distributions compared to distributions generated from powheg. The bb data are well described by both models. The extrapolated total cross section for bottom production is 3.75±0.24(stat)±0.500.35(syst)±0.45(global) [μb], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy and is approximately a factor of 2 higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations
Recommended from our members
Pseudorapidity Dependence of Particle Production and Elliptic Flow in Asymmetric Nuclear Collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV.
Asymmetric nuclear collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production dN_{ch}/dη in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow v_{2} over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow
- …
