6 research outputs found

    Estimating working memory capacity for lists of nonverbal sounds

    Get PDF
    Working memory (WM) capacity limit has been extensively studied in the domains of visual and verbal stimuli. Previous studies have suggested a fixed WM capacity of typically about 3 or 4 items, based on the number of items in working memory reaching a plateau after several items as the set size increases. However, the fixed WM capacity estimate appears to rely on categorical information in the stimulus set (Olsson & Poom, 2005). We designed a series of experiments to investigate nonverbal auditory WM capacity and its dependence on categorical information. Experiments 1 and 2 used simple tones and revealed capacity limit of up to 2 tones following a 6-s retention interval. Importantly, performance was significantly higher at set sizes 2, 3, and 4 when the frequency difference between target and test tones was relatively large. In Experiment 3, we added categorical information to the simple tones, and the effect of tone change magnitude decreased. Maximal capacity for each individual was just over 3 sounds, in the range of typical visual procedures. We propose that two types of information, categorical and detailed acoustic information, are kept in WM, and that categorical information is critical for high WM performance

    Participation of the Classical Speech Areas in Auditory Long-Term Memory

    No full text
    Accumulating evidence suggests that storing speech sounds requires transposing rapidly fluctuating sound waves into more easily encoded oromotor sequences. If so, then the classical speech areas in the caudalmost portion of the temporal gyrus (pSTG) and in the inferior frontal gyrus (IFG) may be critical for performing this acoustic-oromotor transposition. We tested this proposal by applying repetitive transcranial magnetic stimulation (rTMS) to each of these left-hemisphere loci, as well as to a nonspeech locus, while participants listened to pseudowords. After 5 minutes these stimuli were re-presented together with new ones in a recognition test. Compared to control-site stimulation, pSTG stimulation produced a highly significant increase in recognition error rate, without affecting reaction time. By contrast, IFG stimulation led only to a weak, non-significant, trend toward recognition memory impairment. Importantly, the impairment after pSTG stimulation was not due to interference with perception, since the same stimulation failed to affect pseudoword discrimination examined with short interstimulus intervals. Our findings suggest that pSTG is essential for transforming speech sounds into stored motor plans for reproducing the sound. Whether or not the IFG also plays a role in speech-sound recognition could not be determined from the present results
    corecore