14 research outputs found

    Histopathological alterations observed in the liver of Poecilia vivipara (Cyprinodontiformes: Poeciliidae) as a tool for the environmental quality assessment of the Cachoeira River, BA

    No full text
    Histopathological alterations in liver have been widely used as a tool in studies for monitoring environmental quality. To evaluate the environmental quality in the Cachoeira river, five spots were monitored between the municipal districts of Itapé and Ilhéus, using liver histological analysis. The species chosen for analysis was Poecilia vivipara due to the fact that it is one of the most abundant in the sampling. The routine technique of inclusion and impregnation in paraffin was used, and the cuts were stained with Hematoxylin and Eosin (H & E). Histopathological alterations in the liver were evaluated semi-quantitatively and based on the severity of the lesions. The results of the histopathological alteration frequency together with the average taken from the Histopathological Alteration Index from points 1 (Vila de Itapé) and 2 (Fazenda Santa Amélia) showed that in this area the environment is more threatened because of some stressor agent, possibly contaminants that seem to be acting in the environment and endangering the health of fish. The statistic results demonstrated that there were no significant differences among points 1, 2 and 4, which means they are very similar to one another, and are ecologically endangered

    Use of phytoproductivity data in the choice of native plant species to restore a degraded coal mining site amended with a stabilized industrial organic sludge

    No full text
    Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthumâCitharexylum myrianthum, IngaâInga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production
    corecore