7 research outputs found
Assessment of Novel Guarded Needle to Increase Patient Comfort and Decrease Injection Time During Intravitreal Injection
Characterization of Spontaneous and TGF-β-Induced Cell Motility of Primary Human Normal and Neoplastic Mammary Cells In Vitro Using Novel Real-Time Technology
The clinical complications derived from metastatic disease are responsible for the majority of all breast cancer related deaths. Since cell migration and invasion are a prerequisite for metastasis their assessment in patient cancer cells in vitro may have prognostic value for the tumor's metastatic capacity. We employed real-time cell analysis (RTCA) on the xCELLigence DP system to determine in vitro motility of patient-derived primary human breast cancer epithelial cells (HBCEC). Initially, the RTCA assay was validated using established human breast cancer cell lines with either an invasive (MDA-MB-231, MDA-MB-435s) or a non-invasive phenotype (MCF-7, MDA-MB-468), and primary NSCLC cells (Tu459). Previous standard assays of cell migration/invasion revealed that only MDA-MB-231, −435s, and Tu459 cells exhibited spontaneous and TGF-β1-stimulated migration and invasion through a Matrigel barrier. In the present study, the TGF-β1-stimulated activities could be blocked by SB431542, a potent kinase inhibitor of the TGF-β type I receptor ALK5. Application of the RTCA assay to patient-derived tumor cells showed that 4/4 primary HBCEC and primary NSCLC cells, but not normal human mammary epithelial cells (HMEC), displayed high spontaneous migratory and invasive activity which correlated with higher MMP-2 expression and uPA protein levels in HBCEC compared to HMEC. Upon treatment with TGF-β1, HBCEC exhibited morphologic and gene regulatory alterations indicative of epithelial-to-mesenchymal transition. However, exclusively the invasive but not the migratory activity of HBCEC was further enhanced by TGF-β1. This indicates the requirement for molecular, e.g. integrin interactions with Matrigel components in HBCEC in order to become responsive to pro-invasive TGF-β effects. Together, these results show for the first time that tumorigenic HBCEC but not normal HMEC possess a strong basal migratory as well as a basal and TGF-β1-inducible invasive potential. These findings qualify the RTCA assay as an in vitro migration/invasion testing system for patient-specific primary breast cancer cells
Contemporary update on neoadjuvant therapy for bladder cancer.
Administration of neoadjuvant chemotherapy preceding radical cystectomy in patients with bladder cancer remains a matter of debate. Results of prospective, randomized studies have demonstrated an overall absolute survival benefit of 5% at 5 years, provided cisplatin-based combination regimens are used. Owing to the perception of a modest survival benefit, the medical community has been slow to adopt the use of neoadjuvant chemotherapy. Other reasons for the underuse of neoadjuvant chemotherapy range from patient ineligibility to fear of delaying potentially curative surgery in nonresponders. Instead, several institutions have adopted an individualized, risk-adapted approach, in which the decision to administer chemotherapy is based on clinical stage and patient comorbidity profile. The development of new cytotoxic and targeted therapies, in particular immune checkpoint inhibitors, warrants well-designed prospective studies to test their efficacy alone or in combination in the neoadjuvant setting. Moving forward, genomic characterization of muscle-invasive bladder cancer could offer information that aids clinicians in selecting the appropriate chemotherapy regimen. Following neoadjuvant therapy, every effort should be made to ensure optimal surgery, as surgical margins and the number of removed lymph nodes are prognostic factors; thus, radical cystectomy and a meticulous extended pelvic lymph node dissection should be performed by expert surgeons
