70 research outputs found
Label-free cell cycle analysis for high-throughput imaging flow cytometry
Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types
Automatic Robust Neurite Detection and Morphological Analysis of Neuronal Cell Cultures in High-content Screening
Cell-based high content screening (HCS) is becoming an important and increasingly favored
approach in therapeutic drug discovery and functional genomics. In HCS, changes in cellular morphology and biomarker distributions provide an information-rich profile of cellular responses to experimental treatments such as small molecules or gene knockdown probes. One obstacle that currently exists with such cell-based assays is the availability of image processing algorithms that are capable of reliably and automatically analyzing large HCS image sets. HCS images of primary neuronal cell cultures are particularly challenging to analyze due to complex cellular morphology.
Here we present a robust method for quantifying and statistically analyzing the morphology of neuronal cells in HCS images. The major advantages of our method over existing software lie in its capability to correct non-uniform illumination using the contrast-limited adaptive histogram equalization method; segment neuromeres using Gabor-wavelet texture analysis; and detect faint neurites by a novel phase-based neurite extraction algorithm that is invariant to changes in illumination and contrast and can accurately localize neurites. Our method was successfully applied to analyze a large HCS image set generated in a morphology screen for polyglutaminemediated neuronal toxicity using primary neuronal cell cultures derived from embryos of a Drosophila Huntington’s Disease (HD) model.National Institutes of Health (U.S.) (Grant
Impact of image segmentation on high-content screening data quality for SK-BR-3 cells
<p>Abstract</p> <p>Background</p> <p>High content screening (HCS) is a powerful method for the exploration of cellular signalling and morphology that is rapidly being adopted in cancer research. HCS uses automated microscopy to collect images of cultured cells. The images are subjected to segmentation algorithms to identify cellular structures and quantitate their morphology, for hundreds to millions of individual cells. However, image analysis may be imperfect, especially for "HCS-unfriendly" cell lines whose morphology is not well handled by current image segmentation algorithms. We asked if segmentation errors were common for a clinically relevant cell line, if such errors had measurable effects on the data, and if HCS data could be improved by automated identification of well-segmented cells.</p> <p>Results</p> <p>Cases of poor cell body segmentation occurred frequently for the SK-BR-3 cell line. We trained classifiers to identify SK-BR-3 cells that were well segmented. On an independent test set created by human review of cell images, our optimal support-vector machine classifier identified well-segmented cells with 81% accuracy. The dose responses of morphological features were measurably different in well- and poorly-segmented populations. Elimination of the poorly-segmented cell population increased the purity of DNA content distributions, while appropriately retaining biological heterogeneity, and simultaneously increasing our ability to resolve specific morphological changes in perturbed cells.</p> <p>Conclusion</p> <p>Image segmentation has a measurable impact on HCS data. The application of a multivariate shape-based filter to identify well-segmented cells improved HCS data quality for an HCS-unfriendly cell line, and could be a valuable post-processing step for some HCS datasets.</p
Toll‐like receptor‐mediated IRE1α activation as a therapeutic target for inflammatory arthritis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/1/embj2013183-sup-0004-SourceData-S4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/2/embj2013183-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/3/embj2013183-sup-0008-SourceData-S8.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/4/embj2013183-sup-0005-SourceData-S5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/5/embj2013183-sup-0001-SourceData-S1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/6/embj2013183-sup-0009-SourceData-S9.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/7/embj2013183-sup-0006-SourceData-S6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/8/embj2013183-sup-0002-SourceData-S2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/9/embj2013183-sup-0010-SourceData-S10.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/10/embj2013183-sup-0007-SourceData-S7.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/11/embj2013183-sup-0003-SourceData-S3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/12/embj2013183.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/13/embj2013183.reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102185/14/embj2013183-sup-0011-SourceData-S11.pd
Nanoparticle vesicle encoding for imaging and tracking cell populations.
For phenotypic behavior to be understood in the context of cell lineage and local environment, properties of individual cells must be measured relative to population-wide traits. However, the inability to accurately identify, track and measure thousands of single cells via high-throughput microscopy has impeded dynamic studies of cell populations. We demonstrate unique labeling of cells, driven by the heterogeneous random uptake of fluorescent nanoparticles of different emission colors. By sequentially exposing a cell population to different particles, we generated a large number of unique digital codes, which corresponded to the cell-specific number of nanoparticle-loaded vesicles and were visible within a given fluorescence channel. When three colors are used, the assay can self-generate over 17,000 individual codes identifiable using a typical fluorescence microscope. The color-codes provided immediate visualization of cell identity and allowed us to track human cells with a success rate of 78% across image frames separated by 8 h
Image-Based Assessment of Growth and Signaling Changes in Cancer Cells Mediated by Direct Cell-Cell Contact
Many important biological processes are controlled through cell-cell interactions, including the colonization of metastatic tumor cells and the control of differentiation of stem cells within their niche. Despite the crucial importance of the cellular environment in regulating cellular signaling, in vitro methods for the study of such interactions are difficult and/or indirect.We report on the development of an image-based method for distinguishing two cell types grown in coculture. Furthermore, cells of one type that are in direct contact with cells of a second type (adjacent cells) can be analyzed separately from cells that are not within a single well. Changes are evaluated using population statistics, which are useful in detecting subtle changes across two populations. We have used this system to characterize changes in the LNCaP prostate carcinoma cell line when grown in contact with human vascular endothelial cells (HUVECs). We find that the expression and phosphorylation of WWOX is reduced in LNCaP cells when grown in direct contact with HUVECs. Reduced WWOX signaling has been associated with reduced activation or expression of JNK and p73. We find that p73 levels are also reduced in LNCaP cells grown in contact with HUVECs, but we did not observe such a change in JNK levels.We find that the method described is statistically robust and can be adapted to a wide variety of studies where cell function or signaling are affected by heterotypic cell-cell contact. Ironically, a potential challenge to the method is its high level of sensitivity is capable of classifying events as statistically significant (due to the high number cells evaluated individually), when the biological effect may be less clear. The methodology would be best used in conjunction with additional methods to evaluate the biological role of potentially subtle differences between populations. However, many important events, such as the establishment of a metastatic tumor, occur through rare but important changes, and methods such as we describe here can be used to identify and characterize the contribution of the environment to these changes
Phenotype Recognition with Combined Features and Random Subspace Classifier Ensemble
<p>Abstract</p> <p>Background</p> <p>Automated, image based high-content screening is a fundamental tool for discovery in biological science. Modern robotic fluorescence microscopes are able to capture thousands of images from massively parallel experiments such as RNA interference (RNAi) or small-molecule screens. As such, efficient computational methods are required for automatic cellular phenotype identification capable of dealing with large image data sets. In this paper we investigated an efficient method for the extraction of quantitative features from images by combining second order statistics, or Haralick features, with curvelet transform. A random subspace based classifier ensemble with multiple layer perceptron (MLP) as the base classifier was then exploited for classification. Haralick features estimate image properties related to second-order statistics based on the grey level co-occurrence matrix (GLCM), which has been extensively used for various image processing applications. The curvelet transform has a more sparse representation of the image than wavelet, thus offering a description with higher time frequency resolution and high degree of directionality and anisotropy, which is particularly appropriate for many images rich with edges and curves. A combined feature description from Haralick feature and curvelet transform can further increase the accuracy of classification by taking their complementary information. We then investigate the applicability of the random subspace (RS) ensemble method for phenotype classification based on microscopy images. A base classifier is trained with a RS sampled subset of the original feature set and the ensemble assigns a class label by majority voting.</p> <p>Results</p> <p>Experimental results on the phenotype recognition from three benchmarking image sets including HeLa, CHO and RNAi show the effectiveness of the proposed approach. The combined feature is better than any individual one in the classification accuracy. The ensemble model produces better classification performance compared to the component neural networks trained. For the three images sets HeLa, CHO and RNAi, the Random Subspace Ensembles offers the classification rates 91.20%, 98.86% and 91.03% respectively, which compares sharply with the published result 84%, 93% and 82% from a multi-purpose image classifier WND-CHARM which applied wavelet transforms and other feature extraction methods. We investigated the problem of estimation of ensemble parameters and found that satisfactory performance improvement could be brought by a relative medium dimensionality of feature subsets and small ensemble size.</p> <p>Conclusions</p> <p>The characteristics of curvelet transform of being multiscale and multidirectional suit the description of microscopy images very well. It is empirically demonstrated that the curvelet-based feature is clearly preferred to wavelet-based feature for bioimage descriptions. The random subspace ensemble of MLPs is much better than a number of commonly applied multi-class classifiers in the investigated application of phenotype recognition.</p
Imaging the boundaries—innovative tools for microscopy of living cells and real-time imaging
Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells
Data-analysis strategies for image-based cell profiling
Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe
- …
