174 research outputs found
Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion
In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin
Inhibition of Hypoxia-Inducible Factor-1α (HIF-1α) Protein Synthesis by DNA damage inducing agents
10.1371/journal.pone.0010522PLoS ONE55
Influence of Al percentage on the magnetic, optical, and structural properties of Al-doped CoZnO thin films
A physical map of the short arm of wheat chromosome 1A
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS
Synthesis and fungicidal activity of novel 2,5-disubstituted-1,3,4- thiadiazole derivatives containing 5-phenyl-2-furan
Heavy metal pollution evaluation and spatial influence range analysis for main roads within the Fifth Ring Road of Beijing urban
2013-2014 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Speculation invariance (invarspec): Faster safe execution through program analysis
© 2020 IEEE Computer Society. All rights reserved. Many hardware-based defense schemes against speculative execution attacks use special mechanisms to protect instructions while speculative, and lift the mechanisms when the instructions turn non-speculative. In this paper, we observe that speculative instructions can sometimes become Speculation Invariant before turning non-speculative. Speculation invariance means that (i) whether the instruction will execute and (ii) the instruction's operands are not a function of speculative state. Hence, we propose to lift the protection mechanisms on these instructions early, when they become speculation invariant, and issue them without protection. As a result, we improve the performance of the defense schemes without changing their security properties. To exploit speculation invariance, we present the InvarSpec framework. InvarSpec includes a program analysis pass that identifies, for each relevant instruction i, the set of older instructions that are Safe for i-i.e., those that do not prevent i from becoming speculation invariant. At runtime, the InvarSpec micro-architecture loads this information and uses it to determine when speculative instructions can be issued without protection. InvarSpec is one of the first defense schemes for speculative execution that combines cooperative compiler and hardware mechanisms. Our evaluation shows that InvarSpec effectively reduces the execution overhead of hardware defense schemes. For example, on SPEC17, it reduces the average execution overhead of fence protections from 195.3% to 108.2%, of Delay-On-Miss from 39.5% to 24.4%, and of InvisiSpec from 15.4% to 10.9%
- …
