50 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)
Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material
Reporting of Resistance Training Dose, Adherence, and Tolerance in Exercise Oncology.
PURPOSE: While general guidelines (such as CONSORT or Consensus on Exercise Reporting Template) exist to enhance the reporting of exercise interventions in the field of exercise science, there is inadequate detail facilitating the standardized reporting of resistance training adherence in the oncology setting. The purpose of this study was to apply a novel method to report resistance training dose, adherence, and tolerance in patients with cancer. METHODS: A total of 47 prostate cancer patients (70.1 ± 8.9 yr, body mass index, 28.6 ± 4.0) with bone metastatic disease completed an exercise program for 12 wk. We assessed traditional metrics of adherence (attendance and loss to follow-up), in addition to novel proposed metrics (exercise-relative dose intensity, dose modification, and exercise interruption). Total training volume in kilograms (repetitions × sets × training load (weight)) was calculated for each patient. RESULTS: Attendance assessed from traditional metrics was 79.5% ± 17.0% and four patients (9%) were lost to follow-up. The prescribed and actual cumulative total dose of resistance training was 139,886 ± 69,150 kg and 112,835 ± 83,499 kg, respectively, with a mean exercise-relative dose intensity of 77.4% ± 16.6% (range: 19.4% -99.4%). Resistance training was missed (1-2 consecutive sessions) or interrupted (missed ≥3 consecutive sessions) in 41 (87%) and 24 (51%) participants, respectively. Training dose was modified (reduction in sets, repetitions, or weight) in 40 (85%) of patients. Importantly, using attendance as a traditional metric of adherence, these sessions would have all counted as adherence to the protocol. CONCLUSIONS: Traditional reporting metrics of resistance training in exercise oncology may overestimate exercise adherence. Our proposed metrics to capture resistance training dose, adherence, and tolerance may have important applications for future studies and clinical practice
Electroweak parameters of the z0 resonance and the standard model
Contains fulltext :
124399.pdf (publisher's version ) (Open Access
Analyses of the autism-associated neuroligin-3 R451C mutation in human neurons reveal a gain-of-function synaptic mechanism
Mutations in many synaptic genes are associated with autism spectrum disorders (ASD), suggesting that synaptic dysfunction is a key driver of ASD pathogenesis. Among these mutations, the R451C substitution in the NLGN3 gene that encodes the postsynaptic adhesion molecule Neuroligin-3 is noteworthy because it was the first specific mutation linked to ASDs. In mice, the corresponding Nlgn3 R451C-knockin mutation recapitulates social interaction deficits of ASD patients and produces synaptic abnormalities, but the impact of the NLGN3 R451C mutation on human neurons has not been investigated. Here, we generated human knockin neurons with the NLGN3 R451C and NLGN3 null mutations. Strikingly, analyses of NLGN3 R451C-mutant neurons revealed that the R451C mutation decreased NLGN3 protein levels but enhanced the strength of excitatory synapses without affecting inhibitory synapses; meanwhile NLGN3 knockout neurons showed reduction in excitatory synaptic strengths. Moreover, overexpression of NLGN3 R451C recapitulated the synaptic enhancement in human neurons. Notably, the augmentation of excitatory transmission was confirmed in vivo with human neurons transplanted into mouse forebrain. Using single-cell RNA-seq experiments with co-cultured excitatory and inhibitory NLGN3 R451C-mutant neurons, we identified differentially expressed genes in relatively mature human neurons corresponding to synaptic gene expression networks. Moreover, gene ontology and enrichment analyses revealed convergent gene networks associated with ASDs and other mental disorders. Our findings suggest that the NLGN3 R451C mutation induces a gain-of-function enhancement in excitatory synaptic transmission that may contribute to the pathophysiology of ASD
