925 research outputs found
XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia
XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair1,2. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP3,4,5 and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease
Sporadic Colorectal Cancer Development Shows Rejuvenescence Regarding Epithelial Proliferation and Apoptosis
Background and Aims: Sporadic colorectal cancer (CRC) development is a sequential process showing age-dependency,
uncontrolled epithelial proliferation and decreased apoptosis. During juvenile growth cellular proliferation and apoptosis
are well balanced, which may be perturbed upon aging. Our aim was to correlate proliferative and apoptotic activities in
aging human colonic epithelium and colorectal cancer. We also tested the underlying molecular biology concerning the
proliferation- and apoptosis-regulating gene expression alterations.
Materials and Methods: Colorectal biopsies from healthy children (n1 = 14), healthy adults (n2 = 10), adult adenomas
(n3 = 10) and CRCs (n4 = 10) in adults were tested for Ki-67 immunohistochemistry and TUNEL apoptosis assay. Mitosis- and
apoptosis-related gene expression was also studied in healthy children (n1 = 6), adult (n2 = 41) samples and in CRC (n3 = 34)
in HGU133plus2.0 microarray platform. Measured alterations were confirmed with RT-PCR both on dependent and
independent sample sets (n1=6, n2=6, n3 = 6).
Results: Mitotic index (MI) was significantly higher (p,0.05) in intact juvenile (MI = 0.3360.06) and CRC samples
(MI = 0.4260.10) compared to healthy adult samples (MI = 0.1560.06). In contrast, apoptotic index (AI) was decreased in
children (0.1360.06) and significantly lower in cancer (0.0660.03) compared to healthy adult samples (0.1760.05). Eight
proliferation- (e.g. MKI67, CCNE1) and 11 apoptosis-associated genes (e.g. TNFSF10, IFI6) had altered mRNA expression both
in the course of normal aging and carcinogenesis, mainly inducing proliferation and reducing apoptosis compared to
healthy adults. Eight proliferation-associated genes including CCND1, CDK1, CDK6 and 26 apoptosis-regulating genes (e.g.
SOCS3) were differently expressed between juvenile and cancer groups mostly supporting the pronounced cell growth in
CRC.
Conclusion: Colorectal samples from children and CRC patients can be characterized by similarly increased proliferative and
decreased apoptotic activities compared to healthy colonic samples from adults. Therefore, cell kinetic alterations during
colorectal cancer development show uncontrolled rejuvenescence as opposed to the controlled cell growth in juvenile
colonic epithelium
On the Link between the Subseasonal Evolution of the North Atlantic Oscillation and East Asian Climate
We analyse the impact of the North Atlantic Oscillation (NAO) on the climate of East Asia at subseasonal time scales during both winter and summer. These teleconections have mainly been investigated at seasonal and longer time scales, while higher-frequency links are largely unexplored. The NAO is defined using extended empirical orthogonal functions on pentad-mean observations, which allows to elucidate the oscillation’s spatial and temporal evolution and clearly separate the development and decay phases. The downstream dynamical imprint and associated temperature and precipitation anomalies are quantified by means of a linear regression analysis. It is shown that the NAO generates a significant climate response over East Asia during both the dry and wet seasons, whose spatial pattern is highly dependent on the phase of the NAO’s life cycle. Temperature and precipitation anomalies develop concurrently with the NAO mature phase, and reach maximum amplitude 5–10 days later. These are shown to be systematically related to mid and high-latitude teleconnections across the Eurasian continent via eastward-propagating quasi-stationary Rossby waves instigated over the Atlantic and terminating in the northeastern Pacific. These findings underscore the importance of rapidly evolving dynamical processes in governing the NAO’s downstream impacts and teleconnections with East Asia.</p
Profiling of Genes Related to Cross Protection and Competition for NbTOM1 by HLSV and TMV
10.1371/journal.pone.0073725PLoS ONE89-POLN
Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1
Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.National Institutes of Health (U.S.) (NIH grant R01-CA075576)National Institutes of Health (U.S.) (NIH grant R01-CA055042)National Institutes of Health (U.S.) (NIH grant R01-CA149261)National Institutes of Health (U.S.) (NIH grant P30-ES00002)National Institutes of Health (U.S.) (NIH grant P30-ES02109)National Center for Research Resources (U.S.) (grant number M01RR-01066)National Center for Research Resources (U.S.) (grant number UL1 RR025758, Harvard Clinical and Translational Science Center
Balancing repair and tolerance of DNA damage caused by alkylating agents
Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity
Measurement of the matrix element for the decay η′→ηπ +π -
The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio
Recommended from our members
Finite element analysis and calculation method of residual flexural capacity of post-fire RC beams
Fire tests and subsequent bending tests of fourreinforced concrete (RC) beamswere performed. Based on these tests, the post-fire performance of RCbeams was further studied using finite element simulation through reasonable selection of suitable thermal and thermodynamic parameters of steel and concrete materials. A thermodynamic model of RC beams with three sides under fire was built using finite element analysis(FEA)software ABAQUS. The FEA model was validated with the results of fire tests. Different factors were taken into account for further parametric studies in fire using the proposed FE model.The results show that the main factors affecting the fire resistance of the beamsare the thickness of the concretecover, reinforcement ratio of longitudinal steel,the fire exposure timeandthe fire exposure sides. Based on the strength reduction formula at high temperature of steel and concrete, animproved section method was proposed to develop a calculation formula to calculate the flexural capacity of RC beams after fire. The theoretical calculation method proposed in this paper shows good agreement with FEA results, which can be used to calculate the flexuralcapacity of RC beams after fire
First observation of the decays χcJ→π0π0π0π0
We present a study of the P-wave spin-triplet charmonium χ cJ decays (J=0, 1, 2) into π0π0π0π0. The analysis is based on 106×106 ψ⊃′ decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the π0π0π0π0 hadronic final state is observed for the first time. We measure the branching fractions B(χ c0→π0π0π0π0)=(3.34±0. 06±0.44)×10⊃-3, B(χ c1→π0π0π0π0) =(0.57±0.03±0.08)×10⊃-3, and B(χ c2→π0π0π0π0)=(1.21±0.05±0.16) ×10⊃-3, where the uncertainties are statistical and systematical, respectively. © 2011 American Physical Society.published_or_final_versio
Study of a00(980)-f0(980) mixing
Using samples of 2.25×108 J/ψ events and 1.06×108 ψ ′ events collected with the BES III detector, we study the f 0(980)→a00(980) and a00(980)→f 0(980) transitions in the processes J/ψ→φf 0(980) →φa00(980) and χ c1→π0a00(980)→π0f 0(980), respectively. Evidence for f 0(980)→a00(980) is found with a significance of 3.4σ, while in the case of a00(980)→f 0(980) transition, the significance is 1.9σ. Measurements and upper limits of both branching ratios and mixing intensities are determined. © 2011 American Physical Society.published_or_final_versio
- …
