857 research outputs found
Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data.
PublishedEvaluation StudiesJournal ArticleResearch Support, Non-U.S. Gov'tRecently, several experimental techniques have emerged for probing RNA structures based on high-throughput sequencing. However, most secondary structure prediction tools that incorporate probing data are designed and optimized for particular types of experiments. For example, RNAstructure-Fold is optimized for SHAPE data, while SeqFold is optimized for PARS data. Here, we report a new RNA secondary structure prediction method, restrained MaxExpect (RME), which can incorporate multiple types of experimental probing data and is based on a free energy model and an MEA (maximizing expected accuracy) algorithm. We first demonstrated that RME substantially improved secondary structure prediction with perfect restraints (base pair information of known structures). Next, we collected structure-probing data from diverse experiments (e.g. SHAPE, PARS and DMS-seq) and transformed them into a unified set of pairing probabilities with a posterior probabilistic model. By using the probability scores as restraints in RME, we compared its secondary structure prediction performance with two other well-known tools, RNAstructure-Fold (based on a free energy minimization algorithm) and SeqFold (based on a sampling algorithm). For SHAPE data, RME and RNAstructure-Fold performed better than SeqFold, because they markedly altered the energy model with the experimental restraints. For high-throughput data (e.g. PARS and DMS-seq) with lower probing efficiency, the secondary structure prediction performances of the tested tools were comparable, with performance improvements for only a portion of the tested RNAs. However, when the effects of tertiary structure and protein interactions were removed, RME showed the highest prediction accuracy in the DMS-accessible regions by incorporating in vivo DMS-seq data.National Key Basic Research Program of China [2012CB316503]; National High-Tech Research and Development Program of China [2014AA021103]; National Natural Science Foundation of China [31271402]; Tsinghua University Initiative Scientific Research Program [2014z21045]; Hong Kong Research Grants Council Early Career Scheme [419612 to K.Y.]; National Science Foundation [1339282 to D.H.M.]; Computing Platform of the National Protein Facilities (Tsinghua University). Funding for open access charge: National Natural Science Foundation of China [31271402]
Detection of mild to moderate influenza A/H7N9 infection by China's national sentinel surveillance system for influenza-like illness: case series
published_or_final_versio
Erratum to : Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen
BACKGROUND
The haemoflagellate Trypanosoma lewisi is a kinetoplastid parasite which, as it has been recently reported to cause human disease, deserves increased attention. Characteristic features of all kinetoplastid flagellates are a uniquely structured mitochondrial DNA or kinetoplast, comprised of a network of catenated DNA circles, and RNA editing of mitochondrial transcripts. The aim of this study was to describe the kinetoplast DNA of T. lewisi.
METHODS/RESULTS
In this study, purified kinetoplast DNA from T. lewisi was sequenced using high-throughput sequencing in combination with sequencing of PCR amplicons. This allowed the assembly of the T. lewisi kinetoplast maxicircle DNA, which is a homologue of the mitochondrial genome in other eukaryotes. The assembly of 23,745 bp comprises the non-coding and coding regions. Comparative analysis of the maxicircle sequence of T. lewisi with Trypanosoma cruzi, Trypanosoma rangeli, Trypanosoma brucei and Leishmania tarentolae revealed that it shares 78 %, 77 %, 74 % and 66 % sequence identity with these parasites, respectively. The high GC content in at least 9 maxicircle genes of T. lewisi (ATPase6; NADH dehydrogenase subunits ND3, ND7, ND8 and ND9; G-rich regions GR3 and GR4; cytochrome oxidase subunit COIII and ribosomal protein RPS12) implies that their products may be extensively edited. A detailed analysis of the non-coding region revealed that it contains numerous repeat motifs and palindromes.
CONCLUSIONS
We have sequenced and comprehensively annotated the kinetoplast maxicircle of T. lewisi. Our analysis reveals that T. lewisi is closely related to T. cruzi and T. brucei, and may share similar RNA editing patterns with them rather than with L. tarentolae. These findings provide novel insight into the biological features of this emerging human pathogen
Measurement properties of the Edmonton Frail Scale in older adults: a systematic review and meta-analysis
Background: Frailty is a clinical condition characterised by heightened vulnerabilities to stressors and negative health consequences. The Edmonton Frail Scale is a prominent multidimensional tool for assessing frailty across various settings.
Objectives: This review aimed to synthesise and evaluate the certainty of evidence and the quality of Edmonton Frail Scale in older adults aged 60 and above with respect to its reliability (test–retest, inter-rater) and construct validity (convergent, known-group).
Design: Systematic review and meta-analysis.
Setting and participants: Older adults across clinical and community settings.
Methods: A comprehensive search was conducted across eight databases from inception to 29 January 2024. An updated search in MEDLINE (PubMed) on 10 April 2025 identified no additional eligible articles. COSMIN risk-of-bias checklist was used for quality appraisal, and evidence synthesis followed COSMIN guidelines. Random-effects meta-analysis and univariate logistic regression was used to quantitatively synthesise evidence for reliability and construct validity, respectively.
Results: Twenty studies involving 3852 older adults were included. The original Edmonton Frail Scale demonstrated sufficient construct validity across most populations, supported by high certainty of evidence. However, construct validity was inconsistent in acute care populations and in studies using modified Edmonton Frail Scale versions, where content adaptations (e.g., omission of performance-based items) may have affected psychometric performance. Meta-regression revealed that modified versions were significantly less likely to yield positive validity ratings compared to the original Edmonton Frail Scale (OR = 0.29; 95 % CI: 0.09–0.95; p = 0.042). Test–retest and inter-rater reliability were sufficient, though heterogeneity was considerable, and certainty of evidence remained moderate.
Conclusion: The Edmonton Frail Scale shows good overall reliability and validity in assessing frailty among older adults, particularly in stable clinical or community settings. However, caution is warranted when using modified versions or applying the tool in acutely ill populations. Future studies should validate Edmonton Frail Scale adaptations and enhance the precision of reliability estimates, especially in underrepresented regions and high-risk subgroups.
Registration: The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42024504735)
New "light" for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives
Light is known to excite photosensitizers (PS) to produce cytotoxic reactive oxygen species (ROS) in the presence of oxygen. This modality is attractive for designing control measures against animal diseases and pests. Many PS have a proven safety record. Also, the ROS cytotoxicity selects no resistant mutants, unlike other drugs and pesticides. Photodynamic therapy (PDT) refers to the use of PS as light activable tumoricides, microbicides and pesticides in medicine and agriculture.Here we describe "photodynamic vaccination" (PDV) that uses PDT-inactivation of parasites, i.e. Leishmania as whole-cell vaccines against leishmaniasis, and as a universal carrier to deliver transgenic add-on vaccines against other infectious and malignant diseases. The efficacy of Leishmania for vaccine delivery makes use of their inherent attributes to parasitize antigen (vaccine)-presenting cells. Inactivation of Leishmania by PDT provides safety for their use. This is accomplished in two different ways: (i) chemical engineering of PS to enhance their uptake, e.g. Si-phthalocyanines; and (ii) transgenic approach to render Leishmania inducible for porphyrinogenesis. Three different schemes of Leishmania-based PDV are presented diagrammatically to depict the cellular events resulting in cell-mediated immunity, as seen experimentally against leishmaniasis and Leishmania-delivered antigen in vitro and in vivo. Safety versus efficacy evaluations are under way for PDT-inactivated Leishmania, including those further processed to facilitate their storage and transport. Leishmania transfected to express cancer and viral vaccine candidates are being prepared accordingly for experimental trials.We have begun to examine PS-mediated photodynamic insecticides (PDI). Mosquito cells take up rose bengal/cyanosine, rendering them light-sensitive to undergo disintegration in vitro, thereby providing a cellular basis for the larvicidal activity seen by the same treatments. Ineffectiveness of phthalocyanines and porphyrins for PDI underscores its requirement for different PS. Differential uptake of PS by insect versus other cells to account for this difference is under study.The ongoing work is patterned after the one-world approach by enlisting the participation of experts in medicinal chemistry, cell/molecular biology, immunology, parasitology, entomology, cancer research, tropical medicine and veterinary medicine. The availability of multidisciplinary expertise is indispensable for implementation of the necessary studies to move the project toward product development
Fluorine-induced improvement of structural and optical properties of CdTe thin films for solar cell efficiency enhancement
CdTe thin films of different thicknesses were electrodeposited and annealed in air after different chemical treatments to study the effects of thickness and the different chemical treatments on these films for photovoltaic applications. The thicknesses of the samples range from 1.1 μm to 2.1 μm and the annealing process was carried out after prior CdCl2 treatment and CdCl2+CdF2 treatment as well as without any chemical treatment. Detailed optical and structural characterisation of the as-deposited and annealed CdTe thin films using UV-Vis spectrophotometry and x-ray diffraction reveal that incorporating fluorine in the well-known CdCl2 treatment of CdTe produces remarkable improvement in the optical and structural properties of the materials. This CdCl2+CdF2 treatment produced solar cell with efficiency of 8.3% compared to CdCl2 treatment, with efficiency of 3.3%. The results reveal an alternative method of post-deposition chemical treatment of CdTe which can lead to the production of CdTe-based solar cells with enhanced photovoltaic conversion efficiencies compared to the use of only CdCl2.
Keywords: CdTe; CdCl2
Immunomodulatory Potential of Patchouli Alcohol Isolated from Pogostemon cablin (Blanco) Benth (Lamiaceae) in Mice
Purpose: To isolate and purify patchouli alcohol (PA), a tricyclic sesquiterpene constituent of Pogostemon cablin, and investigate its immunomodulatory potential in Kunming mice.Methods: PA was prepared from an ethanol aqueous extract of P. cablin by silica gel column chromatography, and further purified by crystallization using n-hexane. Purity was assessed by analytical gas chromatography (GC) and confirmation of chemical structure performed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The effect of PA from Pogostemon cablin on immunological function was studied by macrophage phagocytosis, immune organ index, serum immunoglobulin level and delayed type hypersensitivity (DTH) in mice that were administered orally doses of 20, 40 and 80 mg/kg.Results: The purity of PA was 99.3%. The oral administration of PA (40, or 80 mg/kg body weight) significantly increased the phagocytic index (p < 0.05), compared with prednisone acetate (PR) group. Administration of PA (80 mg/kg) boosted the production of circulating serum IgM (0.081 ± 0.010) and IgG (1.296 ± 0.120), while IgM and IgG in PR group was 0.069 ± 0.011 (p < 0.01) and 1.180 ± 0.070 (p < 0.01) respectively. However, PA (20 mg/kg) treatment elicited significant decrease in DTH induced by 2, 4-dinitro-chlorobenzene (DNCB) in mice (1.03 ± 0.40, p < 0.05), in comparison to DNCB-induced group (1.67 ± 0.84 mg).Conclusion: These results suggest that PA has significant immunomodulatory properties which probably act by activating mononuclear phagocytic system, augmenting humoral immune response while suppressing cellular immune response.Keywords: Patchouli alcohol, Pogostemon cablin, Immunomodulatory, Phagocytic index, Macrophag
Recommended from our members
A review on approaches to solving Poisson’s equation in projection-based meshless methods for modelling strongly nonlinear water waves
Three meshless methods, including incompressible smooth particle hydrodynamic (ISPH), moving particle semi-implicit (MPS) and meshless local Petrov–Galerkin method based on Rankine source solution (MLPG_R) methods, are often employed to model nonlinear or violent water waves and their interaction with marine structures. They are all based on the projection procedure, in which solving Poisson’s equation about pressure at each time step is a major task. There are three different approaches to solving Poisson’s equation, i.e. (1) discretizing Laplacian directly by approximating the second-order derivatives, (2) transferring Poisson’s equation into a weak form containing only gradient of pressure and (3) transferring Poisson’s equation into a weak form that does not contain any derivatives of functions to be solved. The first approach is often adopted in ISPH and MPS, while the third one is implemented by the MLPG_R method. This paper attempts to review the most popular, though not all, approaches available in literature for solving the equation
Chromium removal from aqueous solution by a PEI-silica nanocomposite
It is essential and important to determine the adsorption mechanism as well as removal efficiency when using an adsorption technique to remove toxic heavy metals from wastewater. In this research, the removal efficiency and mechanism of chromium removal by a silica-based nanoparticle were investigated. A PEI-silica nanoparticle was synthesized by a one-pot technique and exhibited uniformly well-dispersed PEI polymers in silica particles. The adsorption capacity of chromium ions was determined by a batch adsorption test, with the PEI-silica nanoparticle having a value of 183.7 mg/g and monolayer sorption. Adsorption of chromium ions was affected by the solution pH and altered the nanoparticle surface chemically. First principles calculations of the adsorption energies for the relevant adsorption configurations and XPS peaks of Cr and N showed that Cr(VI), [HCrO4](-) is reduced to two species, Cr(III), CrOH2+ and Cr3+, by an amine group and that Cr(III) and Cr(VI) ions are adsorbed on different functional groups, oxidized N and NH3+
- …
