534 research outputs found

    Measurement of the matrix element for the decay η′→ηπ +π -

    Get PDF
    The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio

    Determination of the number of J/ψ events with J/ψ → inclusive decays

    Get PDF
    postprin

    Higher-order multipole amplitude measurement in ψ ′→γχ c2

    Get PDF
    Using 106×106 ψ ′ events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ ′→γχ c2→γπ +π -/γK +K - are measured. A fit to the χ c2 production and decay angular distributions yields M2=0.046±0. 010±0.013 and E3=0.015±0.008±0.018, where the first errors are statistical and the second systematic. Here M2 denotes the normalized magnetic quadrupole amplitude and E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2 signal with 4.4σ statistical significance and is consistent with the charm quark having no anomalous magnetic moment. © 2011 American Physical Society.published_or_final_versio

    First observation of the decays χcJ→π0π0π0π0

    Get PDF
    We present a study of the P-wave spin-triplet charmonium χ cJ decays (J=0, 1, 2) into π0π0π0π0. The analysis is based on 106×106 ψ⊃′ decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the π0π0π0π0 hadronic final state is observed for the first time. We measure the branching fractions B(χ c0→π0π0π0π0)=(3.34±0. 06±0.44)×10⊃-3, B(χ c1→π0π0π0π0) =(0.57±0.03±0.08)×10⊃-3, and B(χ c2→π0π0π0π0)=(1.21±0.05±0.16) ×10⊃-3, where the uncertainties are statistical and systematical, respectively. © 2011 American Physical Society.published_or_final_versio

    Study of a00(980)-f0(980) mixing

    Get PDF
    Using samples of 2.25×108 J/ψ events and 1.06×108 ψ ′ events collected with the BES III detector, we study the f 0(980)→a00(980) and a00(980)→f 0(980) transitions in the processes J/ψ→φf 0(980) →φa00(980) and χ c1→π0a00(980)→π0f 0(980), respectively. Evidence for f 0(980)→a00(980) is found with a significance of 3.4σ, while in the case of a00(980)→f 0(980) transition, the significance is 1.9σ. Measurements and upper limits of both branching ratios and mixing intensities are determined. © 2011 American Physical Society.published_or_final_versio

    Two-photon widths of the χ c0,2 states and helicity analysis for χ c2→γγ

    Get PDF
    Based on a data sample of 106×106 ψ ′ events collected with the BESIII detector, the decays ψ ′→γχ c0,2, χ c0,2→γγ are studied to determine the two-photon widths of the χ c0,2 states. The two-photon decay branching fractions are determined to be B(χ c0→γγ)=(2. 24±0.19±0.12±0.08)×10 -4 and B(χ c2→γγ)=(3.21±0.18±0. 17±0.13)×10 -4. From these, the two-photon widths are determined to be Γ γγ(χ c0)=(2. 33±0.20±0.13±0.17)keV, Γ γγ(χ c2)=(0.63±0.04±0. 04±0.04)keV, and R=Γ γγ(χ c2)/ Γ γγ(χ c0)=0.271±0. 029±0.013±0.027, where the uncertainties are statistical, systematic, and those from the PDG B(ψ ′→γχ c0,2) and Γ(χ c0,2) errors, respectively. The ratio of the two-photon widths for helicity λ=0 and helicity λ=2 components in the decay χ c2→γγ is measured for the first time to be f 0/2=Γγγλ= 0(χ c2)/Γγγλ=2(χ c2)=0. 00±0.02±0.02. © 2012 American Physical Society.published_or_final_versio

    Overexpression of ZEB2 in Peritumoral Liver Tissue Correlates with Favorable Survival after Curative Resection of Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: ZEB2 has been suggested to mediate EMT and disease aggressiveness in several types of human cancers. However, the expression patterns of ZEB2 in hepatocellular carcinoma (HCC) and its effect on prognosis of HCC patients treated with hepatectomy are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the methods of tissue microarray and immunohistochemistry (IHC) were utilized to investigate ZEB2 expression in HCC and peritumoral liver tissue (PLT). Receiver operating characteristic (ROC), spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Up-regulated expression of cytoplasmic/nuclear ZEB2 protein was observed in the majority of PLTs, when compared to HCCs. Further analysis showed that overexpression of cytoplasmic ZEB2 in HCCs was inversely correlated with AFP level, tumor size and differentiation (P<0.05). Also, overexpression of cytoplasmic ZEB2 in PLTs correlated with lower AFP level (P<0.05). In univariate survival analysis, a significant association between overexpression of cytoplasmic ZEB2 by HCCs/PLTs and longer patients' survival was found (P<0.05). Importantly, cytoplasmic ZEB2 expression in PLTs was evaluated as an independent prognostic factor in multivariate analysis (P<0.05). Consequently, a new clinicopathologic prognostic model with cytoplasmic ZEB2 expression (including HCCs and PLTs) was constructed. The model could significantly stratify risk (low, intermediate and high) for overall survival (P = 0.002). CONCLUSIONS/SIGNIFICANCE: Our findings provide a basis for the concept that cytoplasmic ZEB2 expressed by PLTs can predict the postoperative survival of patients with HCC. The combined cytoplasmic ZEB2 prognostic model may become a useful tool for identifying patients with different clinical outcomes

    Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding

    Get PDF
    BACKGROUND: At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species. METHODOLOGY/PRINCIPAL FINDINGS: We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnS(UGA)-trnG(UCC), petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnS(UGA)-trnG(UCC), trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species. SIGNIFICANCE/CONCLUSIONS: Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding

    Crosstalk between Spinal Astrocytes and Neurons in Nerve Injury-Induced Neuropathic Pain

    Get PDF
    Emerging research implicates the participation of spinal dorsal horn (SDH) neurons and astrocytes in nerve injury-induced neuropathic pain. However, the crosstalk between spinal astrocytes and neurons in neuropathic pain is not clear. Using a lumbar 5 (L5) spinal nerve ligation (SNL) pain model, we testified our hypothesis that SDH neurons and astrocytes reciprocally regulate each other to maintain the persistent neuropathic pain states. Glial fibrillary acidic protein (GFAP) was used as the astrocytic specific marker and Fos, protein of the protooncogene c-fos, was used as a marker for activated neurons. SNL induced a significant mechanical allodynia as well as activated SDH neurons indicated by the Fos expression at the early phase and activated astrocytes with the increased expression of GFAP during the late phase of pain, respectively. Intrathecal administration of c-fos antisense oligodeoxynucleotides (ASO) or astroglial toxin L-α-aminoadipate (L-AA) reversed the mechanical allodynia, respectively. Immunofluorescent histochemistry revealed that intrathecal administration of c-fos ASO significantly suppressed activation of not only neurons but also astrocytes induced by SNL. Meanwhile, L-AA shortened the duration of neuronal activation by SNL. Our data offers evidence that neuronal and astrocytic activations are closely related with the maintenance of neuropathic pain through a reciprocal “crosstalk”. The current study suggests that neuronal and non-neuronal elements should be taken integrally into consideration for nociceptive transmission, and that the intervention of such interaction may offer some novel pain therapeutic strategies
    corecore