2,806 research outputs found
The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study
Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy of adsorbed Pyridine molecules (Py-Raman) and in situ Py-IR have been used to investigate the hydroxyl species and acid sites on diatomite surfaces. The Lewis (L) and BrØnsted (B) acid sites, and various hydroxyl species, including isolated hydroxyl groups, H-bonded hydroxyl groups and physically adsorbed water, are identified. The L acid sites in diatomite samples are resulted from the clay impurities, and the B acid sites are resulted from some moderate strength H-bonded hydroxyl groups. At room temperature, both of the isolated and H-bonded silanols associate with the physically adsorbed water by hydrogen bond. After calcination treatment, physically adsorbed water will be desorbed from the silanols, and the silanols will condense with the increase of temperature. Generally, the H-bonded silanols condense more easily than the isolated ones. The properties of surface hydroxyl species of diatomaceous silica are more similar to precipitated silica rather than fumed silica
Thermal field over Tibetan Plateau and Indian summer monsson rainfall
The interannual variability of the temperature anomalies over the Tibetan Plateau (25-45 °N, 75-105 °E) is examined in relation to the Indian summer monsoon rainfall (ISMR: June to September total rainfall). For this purpose, the temperature anomaly data of the central-eastern Tibetan Plateau is divided into three regions using principal component analysis and the ISMR data for the period 1957-89 have been used. It is found that the January temperature anomaly of Region 2 has a significant negative relationship (r = -0.67) with the ISMR of the subsequent season. This region is located over the northeastern part of the Tibetan Plateau, mostly in Qinghai province, including the Bayan Harr Mountain range and the Qaidam Basin. This relationship is consistent and robust during the period of analysis and can be used to predict the strength of the Indian summer monsoon in the subsequent season. It was found that the January temperature anomaly in this region was associated with a persistent winter circulation pattern over the Eurasian continent during January through to March. Finally, the variation patterns of the temperature anomalies in all three regions over the central-eastern Tibetan Plateau during extreme years of the ISMR are examined. It is concluded that the January temperature anomaly over the northeastern Tibetan Plateau can be useful in forecasting the drought and flood conditions over India, especially in predicting the monsoon rainfall over the areas lying along the monsoon trough
A predictive continuum dynamic user-optimal model for a polycentric urban city
A predictive continuum dynamic user-optimal model is extended to investigate the traffic equilibrium problem for a polycentric urban city with multiple central business districts (CBDs). The road network within the city is assumed to be dense and can be viewed as a continuum in which travellers can choose their routes in a two-dimensional space. Travellers are assumed to choose their route to minimise the actual total cost to the destination (i.e. the CBD). The model consists of two parts: the conservation law part and the Hamilton–Jacobi part. The finite volume method is used to solve each part on unstructured meshes. Because the two parts are closely interconnected and have different initial times, solving the model can be treated as a fixed-point problem, which is solved using a self-adaptive method of successive averages. Numerical experiments for an urban city with two CBDs are presented to demonstrate the effectiveness of the model and the numerical algorithm.postprin
European Sea Bass (Dicentrarchus labrax) immune status and disease resistance are impaired by arginine dietary supplementation
Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax) against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation). A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy.European Union's Seventh Framework Programme AQUAEXCEL (Aquaculture Infrastructures for Excellence in European Fish Research) [262336]; AQUAIMPROV [NORTE-07-0124-FEDER-000038]; North Portugal Regional Operational Programme (ON. 2 - O Novo Norte) , under the National Strategic Reference Framework, through the European Regional Development Fund; North Portugal Regional Operational Programme (ON. 2 - O Novo Norte), under the National Strategic Reference Framework through the COMPETE - Operational Competitiveness Programme; Fundacao para a Ciencia e Tecnologia; Fundacao para a Ciencia e Tecnologia [SFRH/BD/89457/2012, SFRH/BPD/77210/2011]; Generalitat Valenciana through the project REVIDPAQUA [ISIC/2012/003]; [PEst-C/MAR/LA0015/2013]; [UID/Multi/04423/2013]info:eu-repo/semantics/publishedVersio
Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice
Dirac points lie at the heart of many fascinating phenomena in condensed
matter physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators [1, 2]. At a Dirac point, two
energy bands intersect linearly and the particles behave as relativistic Dirac
fermions. In solids, the rigid structure of the material sets the mass and
velocity of the particles, as well as their interactions. A different, highly
flexible approach is to create model systems using fermionic atoms trapped in
the periodic potential of interfering laser beams, a method which so far has
only been applied to explore simple lattice structures [3, 4]. Here we report
on the creation of Dirac points with adjustable properties in a tunable
honeycomb optical lattice. Using momentum-resolved interband transitions, we
observe a minimum band gap inside the Brillouin zone at the position of the
Dirac points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inversion symmetry.
Moreover, changing the lattice anisotropy allows us to move the position of the
Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a
critical limit, the two Dirac points merge and annihilate each other - a
situation which has recently attracted considerable theoretical interest [5-9],
but seems extremely challenging to observe in solids [10]. We map out this
topological transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to model
materials where the topology of the band structure plays a crucial role, but
also provide an avenue to explore many-body phases resulting from the interplay
of complex lattice geometries with interactions [11, 12]
A review of physical supply and EROI of fossil fuels in China
This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found
Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy
Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the twodimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human cholangiocarcinoma cells
Intrahepatic cholangiocarcinoma (iCCA) represents a heterogeneous group of malignancies emerging from the biliary tree, often in the context of chronic bile ducts inflammation. The immunological features of iCCA cells and their capability to control the lymphocytes response have not yet been investigated. The aims of the present study were to evaluate the interaction between iCCA cells and human peripheral blood mononuclear cells (PBMCs) and the role of Fas/FasL in modulating T-cells and NK-cells response after direct co-culture. iCCA cells express high levels of Fas and FasL that increase after co-culture with PBMCs inducing apoptosis in CD4(+), CD8(+) T-cells and in CD56(+) NK-cells. In vitro, c-FLIP is expressed in iCCA cells and the co-culture with PBMCs induces an increase of c-FLIP in both iCCA cells and biliary tree stem cells. This c-FLIP increase does not trigger the caspase cascade, thus hindering apoptotis of iCCA cells which, instead, underwent proliferation. The increased expression of Fas, FasL and c-FLIP is confirmed in situ, in human CCA and in primary sclerosing cholangitis. In conclusion our data indicated that iCCA cells have immune-modulatory properties by which they induce apoptosis of T and NK cells, via Fas/FasL pathway, and escape inflammatory response by up-regulating c-FLIP system
Identifying the structure of Zn-N-2 active sites and structural activation
Identification of active sites is one of the main obstacles to rational design of catalysts for diverse applications. Fundamental insight into the identification of the structure of active sites and structural contributions for catalytic performance are still lacking. Recently, X-ray absorption spectroscopy (XAS) and density functional theory (DFT) provide important tools to disclose the electronic, geometric and catalytic natures of active sites. Herein, we demonstrate the structural identification of Zn-N-2 active sites with both experimental/theoretical X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Further DFT calculations reveal that the oxygen species activation on Zn-N-2 active sites is significantly enhanced, which can accelerate the reduction of oxygen with high selectivity, according well with the experimental results. This work highlights the identification and investigation of Zn-N-2 active sites, providing a regular principle to obtain deep insight into the nature of catalysts for various catalytic applications
- …
