311 research outputs found

    Heat cost of parametric generation of microwave squeezed states

    Full text link
    In parametric systems, squeezed states of radiation can be generated via extra work done by external sources. This eventually increases the entropy of the system despite the fact that squeezing is reversible. We investigate the entropy increase due to squeezing and show that it is quadratic in the squeezing rate and may become important in the repeated operation of tunable oscillators (quantum buses) used to connect qubits in various proposed schemes for quantum computing.Comment: 11 pages, 1 figur

    Giant conductance oscillations in a normal mesoscopic ring induced by an SNS Josephson current

    Get PDF
    A theoretical explanation of giant conductance oscillations observed in normal mesoscopic rings with superconducting ``mirrors" is proposed. The effect is due to resonant tuning of Andreev levels to the Fermi level, which enhances the transparency of the system to the normal current. The mechanism is demonstrated for a one-dimensional model system.Comment: 10 pages, RevTeX, 3 fig. available upon request, Appl. Phys. Report 94-

    Two-qubit parametric amplifier: large amplification of weak signals

    Full text link
    Using numerical simulations, we show that two coupled qubits can amplify a weak signal about hundredfold. This can be achieved if the two qubits are biased simultaneously by this weak signal and a strong pump signal, both of which having frequencies close to the inter-level transitions in the system. The weak signal strongly affects the spectrum generated by the strong pumping drive by producing and controlling mixed harmonics with amplitudes of the order of the main harmonic of the strong drive. We show that the amplification is robust with respect to noise, with an intensity of the order of the weak signal. When deviating from the optimal regime (corresponding to strong qubit coupling and a weak-signal frequency equal to the inter-level transition frequency) the proposed amplifier becomes less efficient, but it can still considerably enhance a weak signal (by several tens). We therefore propose to use coupled qubits as a combined parametric amplifier and frequency shifter.Comment: 6 figure

    Tunable refraction in a two dimensional quantum metamaterial

    Full text link
    In this paper we consider a two-dimensional metamaterial comprising an array of qubits (two level quantum objects). Here we show that a two-dimensional quantum metamaterial may be controlled, e.g. via the application of a magnetic flux, so as to provide controllable refraction of an input signal. Our results are consistent with a material that could be quantum birefringent (beam splitter) or not dependent on the application of this control parameter. We note that quantum metamaterials as proposed here may be fabricated from a variety of current candidate technologies from superconducting qubits to quantum dots. Thus the ideas proposed in this work would be readily testable in existing state of the art laboratories.Comment: 4 pages, 2 figure

    Mesoscopic multiterminal Josephson structures: I. Effects of nonlocal weak coupling

    Full text link
    We investigate nonlocal coherent transport in ballistic four-terminal Josephson structures (where bulk superconductors (terminals) are connected through a clean normal layer, e.g., a two-dimensional electron gas). Coherent anisotropic superposition of macroscopic wave functions of the superconductors in the normal region produces phase slip lines (2D analogs to phase slip centres) and time-reversal symmetry breaking 2D vortex states in it, as well as such effects as phase dragging and magnetic flux transfer. The tunneling density of local Andreev states in the normal layer was shown to contain peaks at the positions controlled by the phase differences between the terminals. We have obtained general dependence of these effects on the controlling supercurrent/phase differences between the terminals of the ballistic mesoscopic four-terminal SQUID.Comment: 18 pages, 11 figure
    corecore