1,483 research outputs found

    PERANCANGAN SISTEM RESERVASI ONLINE BERBASIS WEBSITE DI PALAD FUTSAL PULOGADUNG

    Get PDF
    Penelitian ini bertujuan untuk membuat sistem berbasis website yang dapat melakukan reservasi lapangan futsal secara online sehingga dapat memudahkan calon konsumen melakukan reservasi lapangan dan membantu pengelola lapangan futsal dalam mengatasi masalah data yang tidak akurat, pengarsipan yang tidak baik, dan kesalahan informasi jadwal lapangan, karena pelayanan reservasi yang digunakan masih manual yaitu book on the spot. Penelitian dilakukan di Palad Futsal Pulogadung sejak bulan agustus 2015 hingga September 2015. Metode yang digunakan dalam penelitian ini adalah metode penelitian dan pengembangan (Research and Development atau R&D) dengan model pengembangan perangkat lunak waterfall. Secara keseluruhan terdapat 3 tahap dalam proses penelitian ini yaitu penelitian awal, pembuatan produk, dan pengujian produk. Penelitian awal dilakukan untuk mengidentifikasi permasalahan dan mencari solusi dalam pemecahan masalah tersebut. Proses pembuatan produk meliputi tahap analisis, perancangan, implementasi, dan pengujian fungsional. Hasil uji coba menunjukkan bahwa setelah melalui tahapan-tahapan, sistem berbasis website dapat diimplementasikan pada sistem informasi dan cocok untuk menghasilkan sebuah sistem yang dapat melakukan reservasi lapangan futsal secara online di Palad Futsal Pulogadung. Bentuk akhir dari waterfall adalah sebuah sistem reservasi online berbasis website yang dapat dipergunakan oleh calon konsumen dan pengelola Palad Futsal Pulogadung

    Elastomer-based visuotactile sensor for normality of robotic manufacturing systems

    Get PDF
    Modern aircrafts require the assembly of thousands of components with high accuracy and reliability. The normality of drilled holes is a critical geometrical tolerance that is required to be achieved in order to realize an efficient assembly process. Failure to achieve the required tolerance leads to structures prone to fatigue problems and assembly errors. Elastomer-based tactile sensors have been used to support robots in acquiring useful physical interaction information with the environments. However, current tactile sensors have not yet been developed to support robotic machining in achieving the tight tolerances of aerospace structures. In this paper, a novel elastomer-based tactile sensor was developed for cobot machining. Three commercial silicon-based elastomer materials were characterised using mechanical testing in order to select a material with the best deformability. A Finite element model was developed to simulate the deformation of the tactile sensor upon interacting with surfaces with different normalities. Additive manufacturing was employed to fabricate the tactile sensor mould, which was chemically etched to improve the surface quality. The tactile sensor was obtained by directly casting and curing the optimum elastomer material onto the additively manufactured mould. A machine learning approach was used to train the simulated and experimental data obtained from the sensor. The capability of the developed vision tactile sensor was evaluated using real-world experiments with various inclination angles, and achieved a mean perpendicularity tolerance of 0.34°. The developed sensor opens a new perspective on low-cost precision cobot machining

    Normal alkaline phosphatase levels are dependent on race/ethnicity: NationalGEP Health and Nutrition Examination Survey data

    Get PDF
    OBJECTIVE: The range of normal serum alkaline phosphatase is not well defined. We used data from the National Health and Nutrition Examination Survey from 2009 to 2016 to generate normal ranges for a racially diverse sample of healthy adults. METHODS: Respondents 18 years or older were included. Conditions known to elevate alkaline phosphatase were cause for exclusion. Alkaline phosphatase was measured using a colorimetric method based on standardised National Health and Nutrition Examination Survey protocols. Because alkaline phosphatase values were not normally distributed, log transformation was used. We calculated upper limits of normal (97.5 percentile), stratified by sex and race/ethnicity, and 90% CIs for the upper limits of normal. RESULTS: 1199 respondents (673 female, 526 male) had body mass index from 18.5 to less than 25. Upper limits of normal were highest among Hispanics (123.2 IU/L (90% CI 110.2 to 136.7) for females; 123.8 IU/L (90% CI 112.0 to 135.1) for males), followed by African Americans (109.9 IU/L (90% CI 97.3 to 122.4) for females; 116.3 IU/L (90% CI 105.0 to 126.1) for males) and whites (97.1 IU/L (90% CI 91.0 to 103.4) for females; 109.6 IU/L (90% CI 102.1 to 116.3) for males). Asian American/Pacific Islander respondents had the lowest results: 93.8 IU/L (90% CI 88.2 to 99.5) for females and 95.3 IU/L (90% CI 88.1 to 102.1) for males. CONCLUSIONS: The upper limit of normal alkaline phosphatase varies by race/ethnicity in a large US sample with body mass index of 18.5\u3c25

    Global, regional, and national burden of epilepsy, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Epilepsy is one of the most common serious neurological disorders and affects individuals of all ages across the globe. The aim of this study is to provide estimates of the epilepsy burden on the global, regional, and national levels for 1990–2021. Methods: Using well established Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) methodology, we quantified the prevalence of active idiopathic (epilepsy of genetic or unknown origin) and secondary epilepsy (epilepsy due to an underlying abnormality of the brain structure or chemistry), as well as incidence, death, and disability-adjusted life-years (DALYs) by age, sex, and location (globally, 21 GBD regions and seven super-regions, World Bank country income levels, Socio-demographic Index [SDI], and 204 countries) and their trends from 1990 to 2021. Vital registrations and verbal autopsies provided information about deaths, and data on the prevalence and severity of epilepsy, largely came from population representative surveys. All estimates were calculated with 95% uncertainty intervals (UIs). Findings: In 2021, there were 51·7 million (95% UI 44·9–58·9) people with epilepsy (idiopathic and secondary combined) globally, with an age-standardised prevalence of 658 per 100 000 (569–748). Idiopathic epilepsy had an age-standardised prevalence of 307 per 100 000 (235–389) globally, with 24·2 million (18·5–30·7) prevalent cases, and secondary epilepsy had a global age-standardised prevalence of 350 per 100 000 (322–380). In 2021, 0·7% of the population had active epilepsy (0·3% attributed to idiopathic epilepsy and 0·4% to secondary epilepsy), and the age-standardised global prevalence of epilepsy from idiopathic and secondary epilepsy combined increased from 1990 to 2021 by 10·8% (1·1–21·3), mainly due to corresponding changes in secondary epilepsy. However, age-standardised death and DALY rates of idiopathic epilepsy reduced from 1990 to 2021 (decline of 15·8% [8·8–22·8] and 14·5% [4·2–24·2], respectively). There were three-fold to four-fold geographical differences in the burden of active idiopathic epilepsy, with the bulk of the burden residing in low-income to middle-income countries: 82·1% (81·1–83·4) of incident, 80·4% prevalent (79·7–82·7), 84·7% (83·7–85·1) fatal epilepsy, and 87·9% (86·2–89·2) epilepsy DALYs. Interpretation: Although the global trends in idiopathic epilepsy deaths and DALY rates have improved in the preceding decades, in 2021 there were almost 52 million people with active epilepsy (24 million from idiopathic epilepsy and 28 million from secondary epilepsy), with the bulk of the burden (>80%) residing in low-income to middle-income countries. Better treatment and prevention of epilepsy are required, along with further research on risk factors of idiopathic epilepsy, good-quality long-term epilepsy surveillance studies, and exploration of the possible effect of stigma and cultural differences in seeking medical attention for epilepsy. Funding: Bill and Melinda Gates Foundatio

    Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    Get PDF
    Background: Overweight and obesity is a global epidemic. Forecasting future trajectories of the epidemic is crucial for providing an evidence base for policy change. In this study, we examine the historical trends of the global, regional, and national prevalence of adult overweight and obesity from 1990 to 2021 and forecast the future trajectories to 2050. Methods: Leveraging established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study, we estimated the prevalence of overweight and obesity among individuals aged 25 years and older by age and sex for 204 countries and territories from 1990 to 2050. Retrospective and current prevalence trends were derived based on both self-reported and measured anthropometric data extracted from 1350 unique sources, which include survey microdata and reports, as well as published literature. Specific adjustment was applied to correct for self-report bias. Spatiotemporal Gaussian process regression models were used to synthesise data, leveraging both spatial and temporal correlation in epidemiological trends, to optimise the comparability of results across time and geographies. To generate forecast estimates, we used forecasts of the Socio-demographic Index and temporal correlation patterns presented as annualised rate of change to inform future trajectories. We considered a reference scenario assuming the continuation of historical trends. Findings: Rates of overweight and obesity increased at the global and regional levels, and in all nations, between 1990 and 2021. In 2021, an estimated 1·00 billion (95% uncertainty interval [UI] 0·989–1·01) adult males and 1·11 billion (1·10–1·12) adult females had overweight and obesity. China had the largest population of adults with overweight and obesity (402 million [397–407] individuals), followed by India (180 million [167–194]) and the USA (172 million [169–174]). The highest age-standardised prevalence of overweight and obesity was observed in countries in Oceania and north Africa and the Middle East, with many of these countries reporting prevalence of more than 80% in adults. Compared with 1990, the global prevalence of obesity had increased by 155·1% (149·8–160·3) in males and 104·9% (95% UI 100·9–108·8) in females. The most rapid rise in obesity prevalence was observed in the north Africa and the Middle East super-region, where age-standardised prevalence rates in males more than tripled and in females more than doubled. Assuming the continuation of historical trends, by 2050, we forecast that the total number of adults living with overweight and obesity will reach 3·80 billion (95% UI 3·39–4·04), over half of the likely global adult population at that time. While China, India, and the USA will continue to constitute a large proportion of the global population with overweight and obesity, the number in the sub-Saharan Africa super-region is forecasted to increase by 254·8% (234·4–269·5). In Nigeria specifically, the number of adults with overweight and obesity is forecasted to rise to 141 million (121–162) by 2050, making it the country with the fourth-largest population with overweight and obesity. Interpretation: No country to date has successfully curbed the rising rates of adult overweight and obesity. Without immediate and effective intervention, overweight and obesity will continue to increase globally. Particularly in Asia and Africa, driven by growing populations, the number of individuals with overweight and obesity is forecast to rise substantially. These regions will face a considerable increase in obesity-related disease burden. Merely acknowledging obesity as a global health issue would be negligent on the part of global health and public health practitioners; more aggressive and targeted measures are required to address this crisis, as obesity is one of the foremost avertible risks to health now and in the future and poses an unparalleled threat of premature disease and death at local, national, and global levels. Funding: Bill & Melinda Gates Foundation

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Improving topological cluster reconstruction using calorimeter cell timing in ATLAS

    Get PDF
    Clusters of topologically connected calorimeter cells around cells with large absolute signal-to-noise ratio (topo-clusters) are the basis for calorimeter signal reconstruction in the ATLAS experiment. Topological cell clustering has proven performant in LHC Runs 1 and 2. It is, however, susceptible to out-of-time pile-up of signals from soft collisions outside the 25 ns proton-bunch-crossing window associated with the event’s hard collision. To reduce this effect, a calorimeter-cell timing criterion was added to the signal-to-noise ratio requirement in the clustering algorithm. Multiple versions of this criterion were tested by reconstructing hadronic signals in simulated events and Run 2 ATLAS data. The preferred version is found to reduce the out-of-time pile-up jet multiplicity by ∼50% for jet pT ∼ 20 GeV and by ∼80% for jet pT 50 GeV, while not disrupting the reconstruction of hadronic signals of interest, and improving the jet energy resolution by up to 5% for 20 < pT < 30 GeV. Pile-up is also suppressed for other physics objects based on topo-clusters (electrons, photons, τ -leptons), reducing the overall event size on disk by about 6% in early Run 3 pileup conditions. Offline reconstruction for Run 3 includes the timing requirement

    Software Performance of the ATLAS Track Reconstruction for LHC Run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √ s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations
    corecore