161 research outputs found
The near-infrared detection of PSR B0540-69 and its nebula
The ~1700 year old PSR B0540-69 in the LMC is considered the twin of the Crab
pulsar because of its similar spin parameters, magnetic field, and energetics.
Its optical spectrum is fit by a power-law, ascribed to synchrotron radiation,
like for the young Crab and Vela pulsars. nIR observations, never performed for
PSR B0540-69, are crucial to determine whether the optical power-law spectrum
extends to longer wavelengths or a new break occurs, like it happens for both
the Crab and Vela pulsars in the mIR, hinting at an even more complex particle
energy and density distribution in the pulsar magnetosphere. We observed PSR
B0540-69 in the J, H, and Ks bands with the VLT to detect it, for the first
time, in the nIR and characterise its optical-to-nIR spectrum. To disentangle
the pulsar emission from that of its pulsar wind nebula (PWN), we obtained
high-spatial resolution adaptive optics images with NACO. We could clearly
identify PSR B0540-69 in our J, H, and Ks-band images and measure its flux
(J=20.14, H=19.33, Ks=18.55, with an overall error of +/- 0.1 magnitudes in
each band). The joint fit to the available optical and nIR photometry with a
power-law spectrum gives a spectral index alpha=0.70 +/-0.04. The comparison
between our NACO images and HST optical ones does not reveal any apparent
difference in the PWN morphology as a function of wavelength. The PWN
optical-to-nIR spectrum is also fit by a single power-law, with spectral index
alpha=0.56+/- 0.03, slightly flatter than the pulsar's. Using NACO at the VLT,
we obtained the first detection of PSR B0540-69 and its PWN in the nIR. Due to
the small angular scale of the PWN (~4") only the spatial resolution of the
JWST will make it possible to extend the study of the pulsar and PWN spectrum
towards the mid-IR.Comment: 11 pages, 10 figures, Accepted for publication on Astronomy and
Astrophysic
Discovery of very high energy γ-ray emission from the BL Lacertae object PKS 0301-243 with H.E.S.S.
The active galactic nucleus PKS 0301−243 (z = 0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV 100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 h. Gamma rays above 200 GeV are detected at a significance of 9.4σ. A hint of variability at the 2.5σ level is found. An integral flux I(E > 200 GeV) = (3.3 ± 1.1stat ± 0.7syst) × 10-12 ph cm-2 s-1 and a photon index Γ = 4.6 ± 0.7stat ± 0.2syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301−243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.Fil: Abramowski, A.. Universitat Hamburg; AlemaniaFil: Acero, F.. Universite Montpellier II; FranciaFil: Aharonian, F.. Max Planck Institut für Kernphysik; AlemaniaFil: Benkhali, F. Ait. Max Planck Institut für Kernphysik; AlemaniaFil: Akhperjanian, A. G.. National Academy of Sciences of the Republic of Armenia; ArmeniaFil: Medina, Maria Clementina. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; ArgentinaFil: Valerius, K.. Universität Erlangen Nürnberg; AlemaniaFil: van Eldik, C.. Universität Erlangen Nürnberg; AlemaniaFil: Vasileiadis, G.. Universite Montpellier II; FranciaFil: Venter, C.. North West University; SudáfricaFil: Viana, A.. Max Planck Institut für Kernphysik; AlemaniaFil: Vincent, P.. Université Paris Diderot - Paris 7; FranciaFil: Völk, H. J.. Max Planck Institut für Kernphysik; AlemaniaFil: Volpe, F.. Max Planck Institut für Kernphysik; AlemaniaFil: Vorster, M.. North West University; SudáfricaFil: Wagner, S. J.. Universität Heidelberg; AlemaniaFil: Wagner, P.. Humboldt Universität zu Berlin; AlemaniaFil: Ward, M.. University Of Durham; Reino UnidoFil: Weidinger, M.. Ruhr-universität Bochum; AlemaniaFil: Weitzel, Q.. Max Planck Institut für Kernphysik; AlemaniaFil: White, R.. The University of Leicester; Reino UnidoFil: Wierzcholska, A.. Uniwersytet Jagiellonski; PoloniaFil: Willmann, P.. Universität Erlangen Nürnberg; AlemaniaFil: Wörnlein, A.. Universität Erlangen Nürnberg; AlemaniaFil: Wouters, D.. CEA Saclay; FranciaFil: Zacharias, M.. Ruhr-universität Bochum; AlemaniaFil: Zajczyk, A.. Universite Montpellier II; FranciaFil: Zdziarski, A. A.. Nicolaus Copernicus Astronomical Center; PoloniaFil: Zech, A.. Université Paris Diderot - Paris 7; FranciaFil: Zechlin, H. S.. Universitat Hamburg; Alemani
A newly discovered VHE gamma-ray PWN candidate around PSR J1459-60
Observations of the Galactic Plane performed by the H.E.S.S. telescope array have revealed a significant excess at very-high-energies (VHE; E>0.1 TeV) from the direction of PSR J1459-60, a rather old gamma-ray pulsar (64 kyr) with a spindown energy of ~10^36 erg/s, discovered by the Fermi/LAT satellite in high-energy (HE) gamma-rays. The X-ray pulsar counterpart has been recently detected using the Suzaku satellite. In this contribution, we present the discovery of a new VHE gamma-ray source, including morphological and spectral analyses. Its association with the gamma-ray pulsar in a PWN scenario will be discussed
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
- …
