816 research outputs found
Mutual synchronization and clustering in randomly coupled chaotic dynamical networks
We introduce and study systems of randomly coupled maps (RCM) where the
relevant parameter is the degree of connectivity in the system. Global
(almost-) synchronized states are found (equivalent to the synchronization
observed in globally coupled maps) until a certain critical threshold for the
connectivity is reached. We further show that not only the average
connectivity, but also the architecture of the couplings is responsible for the
cluster structure observed. We analyse the different phases of the system and
use various correlation measures in order to detect ordered non-synchronized
states. Finally, it is shown that the system displays a dynamical hierarchical
clustering which allows the definition of emerging graphs.Comment: 13 pages, to appear in Phys. Rev.
Dependences of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties
The Casimir-Polder and van der Waals interactions between an atom and a flat
cavity wall are investigated under the influence of real conditions including
the dynamic polarizability of the atom, actual conductivity of the wall
material and nonzero temperature of the wall. The cases of different atoms near
metal and dielectric walls are considered. It is shown that to obtain accurate
results for the atom-wall interaction at short separations, one should use the
complete tabulated optical data for the complex refractive index of the wall
material and the accurate dynamic polarizability of an atom. At relatively
large separations in the case of a metal wall, one may use the plasma model
dielectric function to describe the dielectric properties of wall material. The
obtained results are important for the theoretical interpretation of
experiments on quantum reflection and Bose-Einstein condensation.Comment: 5 pages, 1 figure, iopart.cls is used, to appear in J. Phys. A
(special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005
An extended-phase-space dynamics for the generalized nonextensive thermostatistics
We apply a variant of the Nose-Hoover thermostat to derive the Hamiltonian of
a nonextensive system that is compatible with the canonical ensemble of the
generalized thermostatistics of Tsallis. This microdynamical approach provides
a deterministic connection between the generalized nonextensive entropy and
power law behavior. For the case of a simple one-dimensional harmonic
oscillator, we confirm by numerical simulation of the dynamics that the
distribution of energy H follows precisely the canonical q-statistics for
different values of the parameter q. The approach is further tested for
classical many-particle systems by means of molecular dynamics simulations. The
results indicate that the intrinsic nonlinear features of the nonextensive
formalism are capable to generate energy fluctuations that obey anomalous
probability laws. For q<1 a broad distribution of energy is observed, while for
q>1 the resulting distribution is confined to a compact support.Comment: 4 pages, 5 figure
Nuclear Multifragmentation in the Non-extensive Statistics - Canonical Formulation
We apply the canonical quantum statistical model of nuclear
multifragmentation generalized in the framework of recently proposed Tsallis
non-extensive thermostatistics for the description of nuclear
multifragmentation process. The test calculation in the system with A=197
nucleons show strong modification of the 'critical' behaviour associated with
the nuclear liquid-gas phase transition for small deviations from the
conventional Boltzmann-Gibbs statistical mechanics.Comment: 4 pages, 4 figure
Dependences of the van der Waals atom-wall interaction on atomic and material properties
The 1%-accurate calculations of the van der Waals interaction between an atom
and a cavity wall are performed in the separation region from 3 nm to 150 nm.
The cases of metastable He and Na atoms near the metal,
semiconductor or dielectric walls are considered. Different approximations to
the description of wall material and atomic dynamic polarizability are
carefully compared. The smooth transition to the Casimir-Polder interaction is
verified. It is shown that to obtain accurate results for the atom-wall van der
Waals interaction at shortest separations with an error less than 1% one should
use the complete optical tabulated data for the complex refraction index of the
wall material and the accurate dynamic polarizability of an atom. The obtained
results may be useful for the theoretical interpretation of recent experiments
on quantum reflection and Bose-Einstein condensation of ultracold atoms on or
near surfaces of different nature.Comment: 14 pages, 5 figures, 3 tables, accepted for publication in Phys. Rev.
Aging in Models of Non-linear Diffusion
We show that for a family of problems described by non-linear diffusion
equations an exact calculation of the two time correlation function gives
C(t,t')=f(t-t')g(t'), t>t', exhibiting normal and anomalous diffusions, as well
as aging effects, depending on the degree of non-linearity. We discuss also the
form in which FDT is violated in this class of systems. Finally we argue that
in this type of models aging may be consequence of the non conservation of the
"total mass".Comment: 4 pages, 1 figure, to appear in Phys.Rev.
Nonextensivity and multifractality in low-dimensional dissipative systems
Power-law sensitivity to initial conditions at the edge of chaos provides a
natural relation between the scaling properties of the dynamics attractor and
its degree of nonextensivity as prescribed in the generalized statistics
recently introduced by one of us (C.T.) and characterized by the entropic index
. We show that general scaling arguments imply that , where and are the
extremes of the multifractal singularity spectrum of the attractor.
This relation is numerically checked to hold in standard one-dimensional
dissipative maps. The above result sheds light on a long-standing puzzle
concerning the relation between the entropic index and the underlying
microscopic dynamics.Comment: 12 pages, TeX, 4 ps figure
Simple models of small world networks with directed links
We investigate the effect of directed short and long range connections in a
simple model of small world network. Our model is such that we can determine
many quantities of interest by an exact analytical method. We calculate the
function , defined as the number of sites affected up to time when a
naive spreading process starts in the network. As opposed to shortcuts, the
presence of un-favorable bonds has a negative effect on this quantity. Hence
the spreading process may not be able to affect all the network. We define and
calculate a quantity named the average size of accessible world in our model.
The interplay of shortcuts, and un-favorable bonds on the small world
properties is studied.Comment: 15 pages, 9 figures, published versio
Anomalous Drude Model
A generalization of the Drude model is studied. On the one hand, the free
motion of the particles is allowed to be sub- or superdiffusive; on the other
hand, the distribution of the time delay between collisions is allowed to have
a long tail and even a non-vanishing first moment. The collision averaged
motion is either regular diffusive or L\'evy-flight like. The anomalous
diffusion coefficients show complex scaling laws. The conductivity can be
calculated in the diffusive regime. The model is of interest for the
phenomenological study of electronic transport in quasicrystals.Comment: 4 pages, latex, 2 figures, to be published in Physical Review Letter
Implications of Form Invariance to the Structure of Nonextensive Entropies
The form invariance of the statement of the maximum entropy principle and the
metric structure in quantum density matrix theory, when generalized to
nonextensive situations, is shown here to determine the structure of the
nonextensive entropies. This limits the range of the nonextensivity parameter
to so as to preserve the concavity of the entropies. The Tsallis entropy is
thereby found to be appropriately renormalized.Comment: 8 page
- …
