1,587 research outputs found

    Novel growth mechanism of epitaxial graphene on metals

    Get PDF

    Regimes of Precursor-Mediated Epitaxial Growth

    Get PDF
    A discussion of epitaxial growth is presented for those situations (OMVPE, CBE, ALE, MOMBE, GSMBE, etc.) when the kinetics of surface processes associated with molecular precursors may be rate limiting. Emphasis is placed on the identification of various {\it characteristic length scales} associated with the surface processes. Study of the relative magnitudes of these lengths permits one to identify regimes of qualitatively different growth kinetics as a function of temperature and deposition flux. The approach is illustrated with a simple model which takes account of deposition, diffusion, desorption, dissociation, and step incorporation of a single precursor species, as well as the usual processes of atomic diffusion and step incorporation. Experimental implications are discussed in some detail.Comment: 10 pages, 2 figure

    Non-collinear spin transfer in Co/Cu/Co multilayers

    Full text link
    This paper has two parts. The first part uses a single point of view to discuss the reflection and averaging mechanisms of spin-transfer between current-carrying electrons and the ferromagnetic layers of magnetic/non-magnetic heterostructures. The second part incorporates both effects into a matrix Boltzmann equation and reports numerical results for current polarization, spin accumulation, magnetoresistance, and spin-transfer torques for Co/Cu/Co multilayers. When possible, the results are compared quantitatively with relevant experiments.Comment: The following article has been submitted to J. Appl. Phys. After it is published, it will be found at http://ojps.aip.org/japo

    Strong Electron Confinement By Stacking-fault Induced Fractional Steps on Ag(111) Surfaces

    Full text link
    The electron reflection amplitude RR at stacking-fault (SF) induced fractional steps is determined for Ag(111) surface states using a low temperature scanning tunneling microscope. Unexpectedly, RR remains as high as 0.60.80.6 \sim 0.8 as energy increases from 0 to 0.5 eV, which is in clear contrast to its rapidly decreasing behavior for monatomic (MA) steps [L. B{\"u}rgi et al., Phys. Rev. Lett. \textbf{81}, 5370 (1998)]. Tight-binding calculations based on {\em ab-initio} derived band structures confirm the experimental finding. Furthermore, the phase shifts at descending SF steps are found to be systematically larger than counterparts for ascending steps by 0.4π\approx 0.4 \pi. These results indicate that the subsurface SF plane significantly contributes to the reflection of surface states

    Triangular Mott-Hubbard Insulator Phases of Sn/Si(111) and Sn/Ge(111) Surfaces

    Full text link
    The ground state of Sn/Si(111) and Sn/Ge(111) surface α\alpha-phases is reexamined theoretically, based on abinitioab-initio calculations where correlations are approximately included through the orbital dependence of the Coulomb interaction (in the local density + Hubbard U approximation). The effect of correlations is to destabilize the vertical buckling in Sn/Ge(111) and to make the surface magnetic, with a metal-insulator transition for both systems. This signals the onset of a stable narrow gap Mott-Hubbard insulating state, in agreement with very recent experiments. Antiferromagnetic exchange is proposed to be responsible for the observed Γ\Gamma-point photoemission intensity, as well asfor the partial metallization observed above above 60 K in Sn/Si(111). Extrinsic metallization of Sn/Si(111) by, e.g.e.g. alkali doping, could lead to a novel 2D triangular superconducting state of this and similar surfaces.Comment: 4 pages, 4 figure

    Kinetic Monte Carlo simulations inspired by epitaxial graphene growth

    Full text link
    Graphene, a flat monolayer of carbon atoms packed tightly into a two dimensional hexagonal lattice, has unusual electronic properties which have many promising nanoelectronic applications. Recent Low Energy Electron Microscopy (LEEM) experiments show that the step edge velocity of epitaxially grown 2D graphene islands on Ru(0001) varies with the fifth power of the supersaturation of carbon adatoms. This suggests that graphene islands grow by the addition of clusters of five atoms rather than by the usual mechanism of single adatom attachment. We have carried out Kinetic Monte Carlo (KMC) simulations in order to further investigate the general scenario of epitaxial growth by the attachment of mobile clusters of atoms. We did not seek to directly replicate the Gr/Ru(0001) system but instead considered a model involving mobile tetramers of atoms on a square lattice. Our results show that the energy barrier for tetramer break up and the number of tetramers that must collide in order to nucleate an immobile island are the important parameters for determining whether, as in the Gr/Ru(0001) system, the adatom density at the onset of island nucleation is an increasing function of temperature. A relatively large energy barrier for adatom attachment to islands is required in order for our model to produce an equilibrium adatom density that is a large fraction of the nucleation density. A large energy barrier for tetramer attachment to islands is also needed for the island density to dramatically decrease with increasing temperature. We show that islands grow with a velocity that varies with the fourth power of the supersaturation of adatoms when tetramer attachment is the dominant process for island growth

    Disorder induced local density of states oscillations on narrow Ag(111) terraces

    Full text link
    The local density of states of Ag(111) has been probed in detail on disordered terraces of varying width by dI/dV-mapping with a scanning tunneling microscope at low temperatures. Apparent shifts of the bottom of the surface-state band edge from terrace induced confinement are observed. Disordered terraces show interesting contrast reversals in the dI/dV maps as a function of tip-sample voltage polarity with details that depend on the average width of the terrace and the particular edge profile. In contrast to perfect terraces with straight edges, standing wave patterns are observed parallel to the step edges, i.e. in the non-confined direction. Scattering calculations based on the Ag(111) surface states reproduce these spatial oscillations and all the qualitative features of the standing wave patterns, including the polarity-dependent contrast reversals.Comment: 19 pages, 12 figure

    Structural Change Can Be Detected in Advanced-Glaucoma Eyes.

    Get PDF
    PurposeTo compare spectral-domain optical coherence tomography (SD-OCT) standard structural measures and a new three-dimensional (3D) volume optic nerve head (ONH) change detection method for detecting change over time in severely advanced-glaucoma (open-angle glaucoma [OAG]) patients.MethodsThirty-five eyes of 35 patients with very advanced glaucoma (defined as a visual field mean deviation < -21 dB) and 46 eyes of 30 healthy subjects to estimate aging changes were included. Circumpapillary retinal fiber layer thickness (cpRNFL), minimum rim width (MRW), and macular retinal ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured using the San Diego Automated Layer Segmentation Algorithm (SALSA). Progression was defined as structural loss faster than 95th percentile of healthy eyes. Three-dimensional volume ONH change was estimated using the Bayesian-kernel detection scheme (BKDS), which does not require extensive retinal layer segmentation.ResultsThe number of progressing glaucoma eyes identified was highest for 3D volume BKDS (13, 37%), followed by GCPIL (11, 31%), cpRNFL (4, 11%), and MRW (2, 6%). In advanced-OAG eyes, only the mean rate of GCIPL change reached statistical significance, -0.18 μm/y (P = 0.02); the mean rates of cpRNFL and MRW change were not statistically different from zero. In healthy eyes, the mean rates of cpRNFL, MRW, and GCIPL change were significantly different from zero. (all P < 0.001).ConclusionsGanglion cell-inner plexiform layer and 3D volume BKDS show promise for identifying change in severely advanced glaucoma. These results suggest that structural change can be detected in very advanced disease. Longer follow-up is needed to determine whether changes identified are false positives or true progression

    Why does wurtzite form in nanowires of III-V zinc-blende semiconductors?

    Full text link
    We develop a nucleation-based model to explain the formation of the wurtzite (WZ) crystalline phase during the vapor-liquid-solid growth of free-standing nanowires of zinc-blende (ZB) semiconductors. We first show that, in nanowires, nucleation generally occurs at the outer edge of the solid/liquid interface (the triple phase line) rather than elsewhere at the solid/liquid interface. In the present case, this entails major differences between ZB and WZ nuclei. Depending on the pertinent interface energies, WZ nucleation is favored at high liquid supersaturation. This explains our systematic observation of ZB during the early stages of nanowire growth.Comment: 4 pages with 4 figures Submitted to Physical Review Letter
    corecore