2,298 research outputs found

    Judaism and the west: From Hermann Cohen to Joseph Soloveitchik

    Full text link
    Published versio

    The Jerusalem Basic Law (1980/2000) and the Jerusalem Embassy Act (1990/95): A comparative investigation of Israeli and US legislation on the status of Jerusalem

    Full text link
    This essay, written from a religious studies perspective, compares two pieces of largely symbolic legislation, the Israeli 1980 Jerusalem Basic Law and the US 1995 Jerusalem Embassy Act, situating them in their respective historical contexts and raising questions about the dynamic of legislative acts that exceed the intention of both those who introduced these bills and the legislators who passed them into law. I argue that these laws indicate the power of broadly-shared public sentiments in modern politics and policy-making, a power that has the potential of overwhelming more pragmatic and cautious approaches to public law

    Cumulative Prospect Theory for Parametric and Multiattribute Utilities

    Get PDF
    In cumulative prospect theory models, different behavior concerning gains and losses is per-mitted. For gains different decision weights are assigned than for losses, and the shape of utility can reveal loss aversion. Decision analyses concentrate on both, the capacities, which determine the decision weights, and the nature of utility. This paper focuses on linear/exponential, power and multilinear utility for decision models under uncertainty. Simple preference axioms are for-mulated for a representation by a cumulative prospect theory function. All models share the following axioms: weak ordering, continuity, monotonicity and tail independence. We first show that in their presence constant absolute (proportional) risk aversion implies linear/exponential (power) utility. Then, in the multiattribute case, considering (mutual) utility independence, it is shown that the utility function is (additive/multiplicative) multilinear.mathematical economics and econometrics ;

    Modulation of waves due to charge-exchange collisions in magnetized partially ionized space plasma

    Full text link
    A nonlinear time dependent fluid simulation model is developed that describes the evolution of magnetohydrodynamic waves in the presence of collisional and charge exchange interactions of a partially ionized plasma. The partially ionized plasma consists of electrons, ions and a significant number of neutral atoms. In our model, the electrons and ions are described by a single fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral gas, described by the compressible hydrodynamic equations. Both the plasma and neutral fluids are treated with different energy equations that describe thermal energy exchange processes between them. Based on our self-consistent model, we find that propagating Alfv\'enic and fast/slow modes grow and damp alternately through a nonlinear modulation process. The modulation appears to be robust and survives strong damping by the neutral component.Comment: The paper has been accepted in Physics Letters

    Properties of mass-loading shocks: 1. Hydrodynamic considerations

    Get PDF
    The one-dimensional hydrodynamics of flows subjected to mass loading are considered anew, with particular emphasis placed on determining the properties of mass-loading shocks. This work has been motivated by recent observations of the outbound Halley bow shock (Neubauer et al., 1990), which cannot be understood in terms of simple hydrodynamical or magnetohydrodynamical descriptions. By including mass injection at the shock, we have investigated the properties of the Rankine-Hugoniot conditions on the basis of a geometric formulation of the entropy condition. Such a condition, which is more powerful than the usual thermodynamical formulation, serves to determine those solutions to the Rankine-Hugoniot conditions which correspond to a physically realizable downstream state. On this basis a concise theoretical description of hydrodynamic mass-loading shocks is obtained. We show that mass-loading shocks have more in common with combustion shocks than with ordinary nonreacting gas dynamical shocks. It is shown that for decelerated solutions to the Rankine-Hugoniot conditions to exist, the upstream flow speed u0 must satisfy u0 > ucrit > cs, where cs is the sound speed. Besides the usual supersonic-subsonic transition, mass-loading fronts can also admit a decelerating supersonic-supersonic transition, the structure of which consists of a sharp decrease in the flow velocity preceding a recovery and an increase in the final downstream flow speed. We suggest the possibility that such structures may describe the inbound Halley bow shock (Coates et al., 1987a). Both parallel and oblique shocks are considered, the primary difference being that oblique shocks are subjected to a shearing stress due to mass loading. It is conjectured that such a shearing may destabilize the shock

    Rationality and dynamic consistency under risk and uncertainty

    Get PDF
    For choice with deterministic consequences, the standard rationality hypothesis is ordinality - i.e., maximization of a weak preference ordering. For choice under risk (resp. uncertainty), preferences are assumed to be represented by the objectively (resp. subjectively) expected value of a von Neumann{Morgenstern utility function. For choice under risk, this implies a key independence axiom; under uncertainty, it implies some version of Savage's sure thing principle. This chapter investigates the extent to which ordinality, independence, and the sure thing principle can be derived from more fundamental axioms concerning behaviour in decision trees. Following Cubitt (1996), these principles include dynamic consistency, separability, and reduction of sequential choice, which can be derived in turn from one consequentialist hypothesis applied to continuation subtrees as well as entire decision trees. Examples of behavior violating these principles are also reviewed, as are possible explanations of why such violations are often observed in experiments

    Whistler Wave Turbulence in Solar Wind Plasma

    Full text link
    Whistler waves are present in solar wind plasma. These waves possess characteristic turbulent fluctuations that are characterized typically by the frequency and length scales that are respectively bigger than ion gyro frequency and smaller than ion gyro radius. The electron inertial length is an intrinsic length scale in whistler wave turbulence that distinguishably divides the high frequency solar wind turbulent spectra into scales smaller and bigger than the electron inertial length. We present nonlinear three dimensional, time dependent, fluid simulations of whistler wave turbulence to investigate their role in solar wind plasma. Our simulations find that the dispersive whistler modes evolve entirely differently in the two regimes. While the dispersive whistler wave effects are stronger in the large scale regime, they do not influence the spectral cascades which are describable by a Kolmogorov-like kāˆ’7/3k^{-7/3} spectrum. By contrast, the small scale turbulent fluctuations exhibit a Navier-Stokes like evolution where characteristic turbulent eddies exhibit a typical kāˆ’5/3k^{-5/3} hydrodynamic turbulent spectrum. By virtue of equipartition between the wave velocity and magnetic fields, we quantify the role of whistler waves in the solar wind plasma fluctuations.Comment: To appear in the Proceedings of Solar Wind 1

    Self-consistent Simulations of Plasma-Neutral in a Partially Ionized Astrophysical Turbulent Plasma

    Full text link
    A local turbulence model is developed to study energy cascades in the heliosheath and outer heliosphere (OH) based on self-consistent two-dimensional fluid simulations. The model describes a partially ionized magnetofluid OH that couples a neutral hydrogen fluid with a plasma primarily through charge-exchange interactions. Charge-exchange interactions are ubiquitous in warm heliospheric plasma, and the strength of the interaction depends largely on the relative speed between the plasma and the neutral fluid. Unlike small-length scale linear collisional dissipation in a single fluid, charge-exchange processes introduce channels that can be effective on a variety of length scales that depend on the neutral and plasma densities, temperature, relative velocities, charge-exchange cross section, and the characteristic length scales. We find, from scaling arguments and nonlinear coupled fluid simulations, that charge-exchange interactions modify spectral transfer associated with large-scale energy-containing eddies. Consequently, the turbulent cascade rate prolongs spectral transfer among inertial range turbulent modes. Turbulent spectra associated with the neutral and plasma fluids are therefore steeper than those predicted by Kolmogorov's phenomenology. Our work is important in the context of the global heliospheric interaction, the energization and transport of cosmic rays, gamma-ray bursts, interstellar density spectra, etc. Furthermore, the plasma-neutral coupling is crucial in understanding the energy dissipation mechanism in molecular clouds and star formation processes.Comment: To appear in the Proceedings of Solar Wind 1
    • …
    corecore