1,325 research outputs found

    Gravitational waves from three-dimensional core-collapse supernova models: The impact of moderate progenitor rotation

    Full text link
    We present predictions for the gravitational-wave (GW) emission of three-dimensional supernova (SN) simulations performed for a 15 solar-mass progenitor with the Prometheus-Vertex code using energy-dependent, three-flavor neutrino transport. The progenitor adopted from stellar evolution calculations including magnetic fields had a fairly low specific angular momentum (j_Fe <~ 10^{15} cm^2/s) in the iron core (central angular velocity ~0.2 rad/s), which we compared to simulations without rotation and with artificially enhanced rotation (j_Fe <~ 2*10^{16} cm^2/s; central angular velocity ~0.5 rad/s). Our results confirm that the time-domain GW signals of SNe are stochastic, but possess deterministic components with characteristic patterns at low frequencies (<~200 Hz), caused by mass motions due to the standing accretion shock instability (SASI), and at high frequencies, associated with gravity-mode oscillations in the surface layer of the proto-neutron star (PNS). Non-radial mass motions in the post-shock layer as well as PNS convection are important triggers of GW emission, whose amplitude scales with the power of the hydrodynamic flows. There is no monotonic increase of the GW amplitude with rotation, but a clear correlation with the strength of SASI activity. Our slowly rotating model is a fainter GW emitter than the non-rotating model because of weaker SASI activity and damped convection in the post-shock layer and PNS. In contrast, the faster rotating model exhibits a powerful SASI spiral mode during its transition to explosion, producing the highest GW amplitudes with a distinctive drift of the low-frequency emission peak from ~80-100 Hz to ~40-50 Hz. This migration signifies shock expansion, whereas non-exploding models are discriminated by the opposite trend.Comment: Added new figure, figure 9. Updated figure 9, now figure 10. Modified the discussion of the proto-neutron star convection. Added a figure showing the average rotation rate as a function of radius. Added a section discussing where the low-frequency gravitational waves are generated, this information is visualized in figure 9. We also made some minor changes to the text and selected plot

    Gravitational Wave Burst Source Direction Estimation using Time and Amplitude Information

    Get PDF
    In this article we study two problems that arise when using timing and amplitude estimates from a network of interferometers (IFOs) to evaluate the direction of an incident gravitational wave burst (GWB). First, we discuss an angular bias in the least squares timing-based approach that becomes increasingly relevant for moderate to low signal-to-noise ratios. We show how estimates of the arrival time uncertainties in each detector can be used to correct this bias. We also introduce a stand alone parameter estimation algorithm that can improve the arrival time estimation and provide root-sum-squared strain amplitude (hrss) values for each site. In the second part of the paper we discuss how to resolve the directional ambiguity that arises from observations in three non co-located interferometers between the true source location and its mirror image across the plane containing the detectors. We introduce a new, exact relationship among the hrss values at the three sites that, for sufficiently large signal amplitudes, determines the true source direction regardless of whether or not the signal is linearly polarized. Both the algorithm estimating arrival times, arrival time uncertainties, and hrss values and the directional follow-up can be applied to any set of gravitational wave candidates observed in a network of three non co-located interferometers. As a case study we test the methods on simulated waveforms embedded in simulations of the noise of the LIGO and Virgo detectors at design sensitivity.Comment: 10 pages, 14 figures, submitted to PR

    A First Comparison Between LIGO and Virgo Inspiral Search Pipelines

    Get PDF
    This article reports on a project that is the first step the LIGO Scientific Collaboration and the Virgo Collaboration have taken to prepare for the mutual search for inspiral signals. The project involved comparing the analysis pipelines of the two collaborations on data sets prepared by both sides, containing simulated noise and injected events. The ability of the pipelines to detect the injected events was checked, and a first comparison of how the parameters of the events were recovered has been completed.Comment: GWDAW-9 proceeding

    Application of asymptotic expansions of maximum likelihood estimators errors to gravitational waves from binary mergers: the single interferometer case

    Get PDF
    In this paper we describe a new methodology to calculate analytically the error for a maximum likelihood estimate (MLE) for physical parameters from Gravitational wave signals. All the existing litterature focuses on the usage of the Cramer Rao Lower bounds (CRLB) as a mean to approximate the errors for large signal to noise ratios. We show here how the variance and the bias of a MLE estimate can be expressed instead in inverse powers of the signal to noise ratios where the first order in the variance expansion is the CRLB. As an application we compute the second order of the variance and bias for MLE of physical parameters from the inspiral phase of binary mergers and for noises of gravitational wave interferometers . We also compare the improved error estimate with existing numerical estimates. The value of the second order of the variance expansions allows to get error predictions closer to what is observed in numerical simulations. It also predicts correctly the necessary SNR to approximate the error with the CRLB and provides new insight on the relationship between waveform properties SNR and estimation errors. For example the timing match filtering becomes optimal only if the SNR is larger than the kurtosis of the gravitational wave spectrum

    A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data

    Get PDF
    We present a comparative study of 6 search methods for gravitational wave bursts using simulated LIGO and Virgo noise data. The data's spectra were chosen to follow the design sensitivity of the two 4km LIGO interferometers and the 3km Virgo interferometer. The searches were applied on replicas of the data sets to which 8 different signals were injected. Three figures of merit were employed in this analysis: (a) Receiver Operator Characteristic curves, (b) necessary signal to noise ratios for the searches to achieve 50 percent and 90 percent efficiencies, and (c) variance and bias for the estimation of the arrival time of a gravitational wave burst.Comment: GWDAW9 proceeding

    Observing gravitational waves from core-collapse supernovae in the advanced detector era

    Get PDF
    The next galactic core-collapse supernova (CCSN) has already exploded, and its electromagnetic (EM) waves, neutrinos, and gravitational waves (GWs) may arrive at any moment. We present an extensive study on the potential sensitivity of prospective detection scenarios for GWs from CCSNe within 5 Mpc, using realistic noise at the predicted sensitivity of the Advanced LIGO and Advanced Virgo detectors for 2015, 2017, and 2019. We quantify the detectability of GWs from CCSNe within the Milky Way and Large Magellanic Cloud, for which there will be an observed neutrino burst. We also consider extreme GW emission scenarios for more distant CCSNe with an associated EM signature. We find that a three-detector network at design sensitivity will be able to detect neutrino-driven CCSN explosions out to ∼5.5  kpc, while rapidly rotating core collapse will be detectable out to the Large Magellanic Cloud at 50 kpc. Of the phenomenological models for extreme GW emission scenarios considered in this study, such as long-lived bar-mode instabilities and disk fragmentation instabilities, all models considered will be detectable out to M31 at 0.77 Mpc, while the most extreme models will be detectable out to M82 at 3.52 Mpc and beyond

    A comparison of methods for gravitational wave burst searches from LIGO and Virgo

    Get PDF
    The search procedure for burst gravitational waves has been studied using 24 hours of simulated data in a network of three interferometers (Hanford 4-km, Livingston 4-km and Virgo 3-km are the example interferometers). Several methods to detect burst events developed in the LIGO Scientific Collaboration (LSC) and Virgo collaboration have been studied and compared. We have performed coincidence analysis of the triggers obtained in the different interferometers with and without simulated signals added to the data. The benefits of having multiple interferometers of similar sensitivity are demonstrated by comparing the detection performance of the joint coincidence analysis with LSC and Virgo only burst searches. Adding Virgo to the LIGO detector network can increase by 50% the detection efficiency for this search. Another advantage of a joint LIGO-Virgo network is the ability to reconstruct the source sky position. The reconstruction accuracy depends on the timing measurement accuracy of the events in each interferometer, and is displayed in this paper with a fixed source position example.Comment: LIGO-Virgo working group submitted to PR
    corecore