1,325 research outputs found
Gravitational waves from three-dimensional core-collapse supernova models: The impact of moderate progenitor rotation
We present predictions for the gravitational-wave (GW) emission of
three-dimensional supernova (SN) simulations performed for a 15 solar-mass
progenitor with the Prometheus-Vertex code using energy-dependent, three-flavor
neutrino transport. The progenitor adopted from stellar evolution calculations
including magnetic fields had a fairly low specific angular momentum (j_Fe <~
10^{15} cm^2/s) in the iron core (central angular velocity ~0.2 rad/s), which
we compared to simulations without rotation and with artificially enhanced
rotation (j_Fe <~ 2*10^{16} cm^2/s; central angular velocity ~0.5 rad/s). Our
results confirm that the time-domain GW signals of SNe are stochastic, but
possess deterministic components with characteristic patterns at low
frequencies (<~200 Hz), caused by mass motions due to the standing accretion
shock instability (SASI), and at high frequencies, associated with gravity-mode
oscillations in the surface layer of the proto-neutron star (PNS). Non-radial
mass motions in the post-shock layer as well as PNS convection are important
triggers of GW emission, whose amplitude scales with the power of the
hydrodynamic flows. There is no monotonic increase of the GW amplitude with
rotation, but a clear correlation with the strength of SASI activity. Our
slowly rotating model is a fainter GW emitter than the non-rotating model
because of weaker SASI activity and damped convection in the post-shock layer
and PNS. In contrast, the faster rotating model exhibits a powerful SASI spiral
mode during its transition to explosion, producing the highest GW amplitudes
with a distinctive drift of the low-frequency emission peak from ~80-100 Hz to
~40-50 Hz. This migration signifies shock expansion, whereas non-exploding
models are discriminated by the opposite trend.Comment: Added new figure, figure 9. Updated figure 9, now figure 10. Modified
the discussion of the proto-neutron star convection. Added a figure showing
the average rotation rate as a function of radius. Added a section discussing
where the low-frequency gravitational waves are generated, this information
is visualized in figure 9. We also made some minor changes to the text and
selected plot
Gravitational Wave Burst Source Direction Estimation using Time and Amplitude Information
In this article we study two problems that arise when using timing and
amplitude estimates from a network of interferometers (IFOs) to evaluate the
direction of an incident gravitational wave burst (GWB). First, we discuss an
angular bias in the least squares timing-based approach that becomes
increasingly relevant for moderate to low signal-to-noise ratios. We show how
estimates of the arrival time uncertainties in each detector can be used to
correct this bias. We also introduce a stand alone parameter estimation
algorithm that can improve the arrival time estimation and provide
root-sum-squared strain amplitude (hrss) values for each site. In the second
part of the paper we discuss how to resolve the directional ambiguity that
arises from observations in three non co-located interferometers between the
true source location and its mirror image across the plane containing the
detectors. We introduce a new, exact relationship among the hrss values at the
three sites that, for sufficiently large signal amplitudes, determines the true
source direction regardless of whether or not the signal is linearly polarized.
Both the algorithm estimating arrival times, arrival time uncertainties, and
hrss values and the directional follow-up can be applied to any set of
gravitational wave candidates observed in a network of three non co-located
interferometers. As a case study we test the methods on simulated waveforms
embedded in simulations of the noise of the LIGO and Virgo detectors at design
sensitivity.Comment: 10 pages, 14 figures, submitted to PR
A First Comparison Between LIGO and Virgo Inspiral Search Pipelines
This article reports on a project that is the first step the LIGO Scientific
Collaboration and the Virgo Collaboration have taken to prepare for the mutual
search for inspiral signals. The project involved comparing the analysis
pipelines of the two collaborations on data sets prepared by both sides,
containing simulated noise and injected events. The ability of the pipelines to
detect the injected events was checked, and a first comparison of how the
parameters of the events were recovered has been completed.Comment: GWDAW-9 proceeding
Application of asymptotic expansions of maximum likelihood estimators errors to gravitational waves from binary mergers: the single interferometer case
In this paper we describe a new methodology to calculate analytically the
error for a maximum likelihood estimate (MLE) for physical parameters from
Gravitational wave signals. All the existing litterature focuses on the usage
of the Cramer Rao Lower bounds (CRLB) as a mean to approximate the errors for
large signal to noise ratios. We show here how the variance and the bias of a
MLE estimate can be expressed instead in inverse powers of the signal to noise
ratios where the first order in the variance expansion is the CRLB. As an
application we compute the second order of the variance and bias for MLE of
physical parameters from the inspiral phase of binary mergers and for noises of
gravitational wave interferometers . We also compare the improved error
estimate with existing numerical estimates. The value of the second order of
the variance expansions allows to get error predictions closer to what is
observed in numerical simulations. It also predicts correctly the necessary SNR
to approximate the error with the CRLB and provides new insight on the
relationship between waveform properties SNR and estimation errors. For example
the timing match filtering becomes optimal only if the SNR is larger than the
kurtosis of the gravitational wave spectrum
A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data
We present a comparative study of 6 search methods for gravitational wave
bursts using simulated LIGO and Virgo noise data. The data's spectra were
chosen to follow the design sensitivity of the two 4km LIGO interferometers and
the 3km Virgo interferometer. The searches were applied on replicas of the data
sets to which 8 different signals were injected. Three figures of merit were
employed in this analysis: (a) Receiver Operator Characteristic curves, (b)
necessary signal to noise ratios for the searches to achieve 50 percent and 90
percent efficiencies, and (c) variance and bias for the estimation of the
arrival time of a gravitational wave burst.Comment: GWDAW9 proceeding
Observing gravitational waves from core-collapse supernovae in the advanced detector era
The next galactic core-collapse supernova (CCSN) has already exploded, and its electromagnetic (EM) waves, neutrinos, and gravitational waves (GWs) may arrive at any moment. We present an extensive study on the potential sensitivity of prospective detection scenarios for GWs from CCSNe within 5 Mpc, using realistic noise at the predicted sensitivity of the Advanced LIGO and Advanced Virgo detectors for 2015, 2017, and 2019. We quantify the detectability of GWs from CCSNe within the Milky Way and Large Magellanic Cloud, for which there will be an observed neutrino burst. We also consider extreme GW emission scenarios for more distant CCSNe with an associated EM signature. We find that a three-detector network at design sensitivity will be able to detect neutrino-driven CCSN explosions out to ∼5.5 kpc, while rapidly rotating core collapse will be detectable out to the Large Magellanic Cloud at 50 kpc. Of the phenomenological models for extreme GW emission scenarios considered in this study, such as long-lived bar-mode instabilities and disk fragmentation instabilities, all models considered will be detectable out to M31 at 0.77 Mpc, while the most extreme models will be detectable out to M82 at 3.52 Mpc and beyond
A comparison of methods for gravitational wave burst searches from LIGO and Virgo
The search procedure for burst gravitational waves has been studied using 24
hours of simulated data in a network of three interferometers (Hanford 4-km,
Livingston 4-km and Virgo 3-km are the example interferometers). Several
methods to detect burst events developed in the LIGO Scientific Collaboration
(LSC) and Virgo collaboration have been studied and compared. We have performed
coincidence analysis of the triggers obtained in the different interferometers
with and without simulated signals added to the data. The benefits of having
multiple interferometers of similar sensitivity are demonstrated by comparing
the detection performance of the joint coincidence analysis with LSC and Virgo
only burst searches. Adding Virgo to the LIGO detector network can increase by
50% the detection efficiency for this search. Another advantage of a joint
LIGO-Virgo network is the ability to reconstruct the source sky position. The
reconstruction accuracy depends on the timing measurement accuracy of the
events in each interferometer, and is displayed in this paper with a fixed
source position example.Comment: LIGO-Virgo working group submitted to PR
- …
