2,004 research outputs found
Spin Glass and ferromagnetism in disordered Cerium compounds
The competition between spin glass, ferromagnetism and Kondo effect is
analysed here in a Kondo lattice model with an inter-site random coupling
between the localized magnetic moments given by a generalization of
the Mattis model which represents an interpolation between ferromagnetism and a
highly disordered spin glass. Functional integral techniques with Grassmann
fields have been used to obtain the partition function. The static
approximation and the replica symmetric ansatz have also been used. The
solution of the problem is presented as a phase diagram giving {\it
versus} where is the temperature, and are the
strengths of the intrasite Kondo and the intersite random couplings,
respectively. If is small, when temperature is decreased, there is a
second order transition from a paramagnetic to a spin glass phase. For lower
, a first order transition appears between the spin glass phase and a
region where there are Mattis states which are thermodynamically equivalent to
the ferromagnetism. For very low , the Mattis states become stable. On
the other hand, it is found as solution a Kondo state for large
values. These results can improve the theoretical description of the well known
experimental phase diagram of .Comment: 17 pages, 5 figures, accepted Phys. Rev.
Spin-strain coupling in NiCl2-4SC(NH2)2
We report results of ultrasonic investigations of the quantum S = 1 spin-chain magnet NiCl2-4SC(NH2)2, also known as DTN, in magnetic fields up to 18 T and temperatures down to 0.3 K. A field H along the [001] direction induces a transition into an antiferromagnetic phase with T(N)max ≈ 1.2 K. Accordingly, at T = 0 there are two quantum critical points at ~2.1 T and at ~12.6 T. The acoustic c33 mode, propagating along the spin chains, shows a pronounced softening close to the phase transition, accompanied by energy dissipation of the sound wave. The H-T phase diagram obtained from our measurements is compared with results from other experimental investigations and the low-temperature acoustic anomalies are traced up to T > T(N). We also report frequency-dependent effects, which open the possibility to investigate the spin fluctuations in the critical regions. Our observations show an important role of the spin-phonon coupling in DTN
Multiferroic behavior in the new double-perovskite LuMnCoO
We present a new member of the multiferroic oxides, LuMnCoO, which we
have investigated using X-ray diffraction, neutron diffraction, specific heat,
magnetization, electric polarization, and dielectric constant measurements.
This material possesses an electric polarization strongly coupled to a net
magnetization below 35 K, despite the antiferromagnetic ordering of the Mn and Co spins in an configuration along the c-direction. We discuss the magnetic order
in terms of a condensation of domain boundaries between and
ferromagnetic domains, with each domain boundary
producing a net electric polarization due to spatial inversion symmetry
breaking. In an applied magnetic field the domain boundaries slide, controlling
the size of the net magnetization, electric polarization, and magnetoelectric
coupling
Anisotropic determined up to 92 T and the signature of multi-band superconductivity in Ca(PtAs)((FePt)As) superconductor
The upper critical fields, (), of single crystals of the
superconductor
Ca(PtAs)((FePt)As)
( 0.246) are determined over a wide range of temperatures
down to = 1.42 K and magnetic fields of up to 92 T. The
measurements of anisotropic () curves are performed in pulsed
magnetic fields using radio-frequency contactless penetration depth
measurements for magnetic field applied both parallel and perpendicular to the
\textbf{ab}-plane. Whereas a clear upward curvature in
() along \textbf{H}\textbf{c} is
observed with decreasing temperature, the ()
along \textbf{H}\textbf{ab} shows a flattening at low temperatures.
The rapid increase of the () at low
temperatures suggests that the superconductivity can be described by two
dominating bands. The anisotropy parameter,
, is 7 close
to and decreases considerably to 1 with decreasing temperature,
showing rather weak anisotropy at low temperatures.Comment: 4pages, 3figures, accepted PRB Rapid Communicatio
Persistent detwinning of iron pnictides by small magnetic fields
Our comprehensive study on EuFeAs reveals a dramatic reduction of
magnetic detwinning fields compared to other AFeAs (A = Ba, Sr, Ca)
iron pnictides by indirect magneto-elastic coupling of the Eu ions. We
find that only 0.1T are sufficient for persistent detwinning below the local
Eu ordering; above = 19K, higher fields are necessary.
Even after the field is switched off, a significant imbalance of twin domains
remains constant up to the structural and electronic phase transition (190K).
This persistent detwinning provides the unique possibility to study the low
temperature electronic in-plane anisotropy of iron pnictides without applying
any symmetrybreaking external force.Comment: accepted by Physical Review Letter
- …
