67 research outputs found

    Is demagnetization an efficient optimization method?

    Full text link
    Demagnetization, commonly employed to study ferromagnets, has been proposed as the basis for an optimization tool, a method to find the ground state of a disordered system. Here we present a detailed comparison between the ground state and the demagnetized state in the random field Ising model, combing exact results in d=1d=1 and numerical solutions in d=3d=3. We show that there are important differences between the two states that persist in the thermodynamic limit and thus conclude that AC demagnetization is not an efficient optimization method.Comment: 2 pages, 1 figur

    Two-stage Kondo effect in side-coupled quantum dots: Renormalized perturbative scaling theory and Numerical Renormalization Group analysis

    Full text link
    We study numerically and analytically the dynamical (AC) conductance through a two-dot system, where only one of the dots is coupled to the leads but it is also side-coupled to the other dot through an antiferromagnetic exchange (RKKY) interaction. In this case the RKKY interaction gives rise to a ``two-stage Kondo effect'' where the two spins are screened by two consecutive Kondo effects. We formulate a renormalized scaling theory that captures remarkably well the cross-over from the strongly conductive correlated regime to the low temperature low conductance state. Our analytical formulas agree well with our numerical renormalization group results. The frequency dependent current noise spectrum is also discussed.Comment: 6 pages, 7 figure

    Schwinger Boson approach to the fully screened Kondo model

    Full text link
    We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a non-trivial Wilson ratio. When applied to the two impurity model, the mean-field theory describes the "Varma Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.Comment: 4 pages, 4 figures. Changes to references and text in v

    Theory of anisotropic Rashba splitting of surface states

    Full text link
    We investigate the surface Rashba effect for a surface of reduced in-plane symmetry. Formulating a k.p perturbation theory, we show that the Rashba splitting is anisotropic, in agreement with symmetry-based considerations. We show that the anisotropic Rashba splitting is due to the admixture of bulk states of different symmetry to the surface state, and it cannot be explained within the standard theoretical picture supposing just a normal-to-surface variation of the crystal potential. Performing relativistic ab initio calculations we find a remarkably large Rashba anisotropy for an unreconstructed Au(110) surface that is in the experimentally accessible range.Comment: 4 pages, 5 figure

    A note on cluster methods for strongly correlated electron systems

    Full text link
    We develop, clarify and test various aspects of cluster methods dynamical mean field methods using a soluble toy model as a benchmark. We find that the Cellular Dynamical Mean Field Theory (C-DMFT) converges very rapidly and compare its convergence properties with those of the Dynamical Cluster Approximation (DCA). We propose and test improved estimators for the lattice self energy within C-DMFT.Comment: 5 pages, 3 figures; major change

    Frustration of Decoherence in Open Quantum Systems

    Full text link
    We study a model of frustration of decoherence in an open quantum system. Contrary to other dissipative ohmic impurity models, such as the Kondo model or the dissipative two-level system, the impurity model discussed here never presents overdamped dynamics even for strong coupling to the environment. We show that this unusual effect has its origins in the quantum mechanical nature of the coupling between the quantum impurity and the environment. We study the problem using analytic and numerical renormalization group methods and obtain expressions for the frequency and temperature dependence of the impurity susceptibility in different regimes.Comment: 14 pages, 5 figure

    Zero temperature geometric spin dephasing on a ring in presence of an Ohmic environment

    Full text link
    We study zero temperature spin dynamics of a particle confined to a ring in presence of spin orbit coupling and Ohmic electromagnetic fluctuations. We show that the dynamics of the angular position θ(t)\theta(t) are decoupled from the spin dynamics and that the latter is mapped to certain correlations of a spinless particle. We find that the spin correlations in the zz direction (perpendicular to the ring) are finite at long times, i.e. do not dephase. The parallel (in plane) components for spin \half do not dephase at weak dissipation but they probably decay as a power law with time at strong dissipation.Comment: 5 pages, submitted to EP
    corecore