773 research outputs found

    Human phenotypes caused by PIEZO1 mutations; one gene, two overlapping phenotypes?

    Get PDF
    PIEZO1 is a large mechanosensitive ion channel protein. Diseases associated with PIEZO1 include autosomal recessive Generalised Lymphatic Dysplasia of Fotiou (GLDF) and autosomal dominant Dehydrated Hereditary Stomatocytosis with or without pseudohyperkalemia and/or perinatal oedema (DHS). The two disorders show overlapping features, fetal hydrops/perinatal oedema have been reported in both. Electrophysiological studies suggest opposite mechanisms of action, the mutations identified in GLDF patients cause a loss-of-function mechanism of disease and mutations in DHS patients cause gain-of-function. This raises the question, is the pathogenic disease mechanism behind the fetal oedema the same in the two phenotypes? In this symposium review, we will discuss the two conditions and highlight key questions that remain to be answered. For instance, the perinatal oedema often resolves soon after birth and we are still at a loss to understand why. Are there any mechanisms which could compensate for the faulty PIEZO1 in these patients? Are there physiological changes at birth that are less reliant on the function of PIEZO1? Thus, there is a clear need for further studies into the two disorders, in order to fully understand the role of PIEZO1 in health and disease

    Piezo1 integration of vascular architecture with physiological force

    Get PDF
    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic¹⁻⁵. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁶⁻⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology
    corecore