316 research outputs found
Analytical study of an exclusive genetic switch
The nonequilibrium stationary state of an exclusive genetic switch is
considered. The model comprises two competing species and a single binding site
which, when bound to by a protein of one species, causes the other species to
be repressed. The model may be thought of as a minimal model of the power
struggle between two competing parties. Exact solutions are given for the
limits of vanishing binding/unbinding rates and infinite binding/unbinding
rates. A mean field theory is introduced which is exact in the limit of
vanishing binding/unbinding rates. The mean field theory and numerical
simulations reveal that generically bistability occurs and the system is in a
symmetry broken state. An exact perturbative solution which in principle allows
the nonequilibrium stationary state to be computed is also developed and
computed to first and second order.Comment: 28 pages, 6 figure
Spatial and Temporal Variations in Small-Scale Galactic HI Structure Toward 3C~138
We present three epochs of VLBA observations of Galactic HI absorption toward
the quasar 3C~138 with resolutions of 20 mas (~ 10 AU). This analysis includes
VLBA data from observations in 1999 and 2002 along with a reexamination of 1995
VLBA data. Improved data reduction and imaging techniques have led to an order
of magnitude improvement in sensitivity compared to previous work. With these
new data we confirm the previously detected milliarcsecond scale spatial
variations in the HI opacity at the level of Delta(tau_{max}) =0.50 \pm 0.05.
The typical size scale of the optical depth variations is ~ 50 mas or 25 AU. In
addition, for the first time we see clear evidence for temporal variations in
the HI opacity over the seven year time span of our three epochs of data. We
also attempted to detect the magnetic field strength in the HI gas using the
Zeeman effect. From this analysis we have been able to place a 3 sigma upper
limit on the magnetic field strength per pixel of ~45 muG. We have also been
able to calculate for the first time the plane of sky covering fraction of the
small scale HI gas of ~10%. We also find that the line widths of the
milliarcsecond sizescale HI features are comparable to those determined from
previous single dish measurements toward 3C~138, suggesting that the opacity
variations cannot be due to changes in the HI spin temperature. From these
results we favor a density enhancement interpretation for the small scale HI
structures, although these enhancements appear to be of short duration and are
unlikely to be in equilibrium.Comment: 34 pages, 8 figures. Figures 3 & 4 are in color. Accepted to A
Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN\,2012ap
Deep late-time X-ray observations of the relativistic, engine-driven, type Ic
SN2012ap allow us to probe the nearby environment of the explosion and reveal
the unique properties of relativistic SNe. We find that on a local scale of
~0.01 pc the environment was shaped directly by the evolution of the progenitor
star with a pre-explosion mass-loss rate <5x10^-6 Msun yr-1 in line with GRBs
and the other relativistic SN2009bb. Like sub-energetic GRBs, SN2012ap is
characterized by a bright radio emission and evidence for mildly relativistic
ejecta. However, its late time (t~20 days) X-ray emission is ~100 times fainter
than the faintest sub-energetic GRB at the same epoch, with no evidence for
late-time central engine activity. These results support theoretical proposals
that link relativistic SNe like 2009bb and 2012ap with the weakest observed
engine-driven explosions, where the jet barely fails to breakout. Furthermore,
our observations demonstrate that the difference between relativistic SNe and
sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This
phenomenology can either be due to an intrinsically shorter-lived engine or to
a more extended progenitor in relativistic SNe.Comment: Version accepted to ApJ. Significantly broadened discussio
Atmospheric phase correction using CARMA-PACS: high angular resolution observations of the FU Orionis star PP 13S*
We present 0".15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around
the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave
Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric
delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of
the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS
was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux
of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source
major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface
density. The total disk mass from the best-fit model corresponds to 0.06 M_⊙, which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability
On the Solutions of the Lorentz-Dirac Equation
We discuss the unstable character of the solutions of the Lorentz-Dirac
equation and stress the need of methods like order reduction to derive a
physically acceptable equation of motion. The discussion is illustrated with
the paradigmatic example of the non-relativistic harmonic oscillator with
radiation reaction. We also illustrate removal of the noncasual
pre-acceleration with the introduction of a small correction in the
Lorentz-Dirac equation.Comment: 4 eps figs. to be published in GR
High resolution radio observations of the colliding-wind binary WR140
Milli-arcsecond resolution Very Long Baseline Array (VLBA) observations of
the archetype WR+O star colliding-wind binary (CWB) system WR140 are presented
for 23 epochs between orbital phases 0.74 and 0.97. At 8.4 GHz, the emission in
the wind-collision region (WCR) is clearly resolved as a bow-shaped arc that
rotates as the orbit progresses. We interpret this rotation as due to the O
star moving from SE to approximately E of the WR star, which leads to solutions
for the orbit inclination of 122+/-5 deg, the longitude of the ascending node
of 353+/-3 deg, and an orbit semi-major axis of 9.0+/-0.5 mas. The distance to
WR140 is determined to be 1.85+/-0.16 kpc, which requires the O star to be a
supergiant. The inclination implies the mass of the WR and O star to be 20+/-4
and 54+/-10 solar masses respectively. We determine a wind-momentum ratio of
0.22, with an expected half-opening angle for the WCR of 63 deg, consistent
with 65+/-10 deg derived from the VLBA observations. Total flux measurements
from Very Large Array (VLA) observations show the radio emission from WR140 is
very closely the same from one orbit to the next, pointing strongly toward
emission, absorption and cooling mechanism(s) that are controlled largely by
the orbital motion. The synchrotron spectra evolve dramatically through the
orbital phases observed, exhibiting both optically thin and optically thick
emission. We discuss a number of absorption and cooling mechanisms that may
determine the evolution of the synchrotron spectrum with orbital phase.Comment: Accepted by ApJ, to appear in v623, April 20, 2005. 14 pages, 13
figs, requires emulateapj.cls. A version with full resolution figs can be
obtained from http://www.drao.nrc.ca/~smd/preprint/wr140_data.pd
Dynamically Driven Evolution of the Interstellar Medium in M51
Massive star formation occurs in giant molecular clouds (GMCs); an understanding of the evolution of GMCs is a prerequisite to develop theories of star formation and galaxy evolution. We report the highest-fidelity observations of the grand-design spiral galaxy M51 in carbon monoxide (CO) emission, revealing the evolution of GMCs vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (giant molecular associations (GMAs)) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H_2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics—their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the interarm region and into the next spiral arm passage
A Resolved Ring of Debris Dust around the Solar Analog HD 107146
We present resolved images of the dust continuum emission from the debris disk around the young (80-200 Myr) solar-type star HD 107146 with CARMA at λ = 1.3 mm and the CSO at λ = 350 μ. Both images show that the dust emission extends over an approximately 10" diameter region. The high-resolution (3") CARMA image further reveals that the dust is distributed in a partial ring with significant decrease in a flux inward of 97 AU. Two prominent emission peaks appear within the ring separated by ~140° in the position angle. The morphology of the dust emission is suggestive of dust captured into a mean motion resonance, which would imply the presence of a planet at an orbital radius of ~45-75 AU
Constraining GRB Emission Physics with Extensive Early-Time, Multiband Follow-up
Understanding the origin and diversity of emission processes responsible for
Gamma-ray Bursts (GRBs) remains a pressing challenge. While prompt and
contemporaneous panchromatic observations have the potential to test
predictions of the internal-external shock model, extensive multiband imaging
has been conducted for only a few GRBs. We present rich, early-time, multiband
datasets for two \swift\ events, GRB 110205A and GRB 110213A. The former shows
optical emission since the early stages of the prompt phase, followed by the
steep rising in flux up to ~1000s after the burst ( with
). We discuss this feature in the context of the
reverse-shock scenario and interpret the following single power-law decay as
being forward-shock dominated. Polarization measurements, obtained with the
RINGO2 instrument mounted on the Liverpool Telescope, also provide hints on the
nature of the emitting ejecta. The latter event, instead, displays a very
peculiar optical to near-infrared lightcurve, with two achromatic peaks. In
this case, while the first peak is probably due to the onset of the afterglow,
we interpret the second peak to be produced by newly injected material,
signifying a late-time activity of the central engine.Comment: 48 pages,11 figures, 24 tables. Accepted to The Astrophysical Journa
- …
