1,508 research outputs found
Potential Impact of the Greenhouse Effect on the Mediterranean Sea: Overview
One of the objectives of IIASA's Study, "The Future Environments for Europe: Some Implications of Alternative Development Paths", is to foresee long-term, broad-scale environmental transformations before they actually occur. Toward this goal, this paper focuses on the potential changes in the Mediterranean Sea owing to climatic change and chemical pollution. Hitherto, the Mediterranean Sea, especially the deeper, western half, has been relatively resilient to environmental changes. This is true in part, because of its great depth compared to, for example, the North and Baltic Seas, and in part because of the relatively low inputs from industrial wastes compared to the situation in northern Europe.
However, as explained by the author, plausible changes in climate may lead to large-scale environmental changes in the Mediterranean and the adjacent Adriatic Sea. Moreover, an expected rapid level of development on the southern coast of the Mediterranean, owing to population pressures and industrialization, could lead to increased inputs of chemical pollutants over and above those originating from development activities on the northern coast.
Finally, the author sets forth the possibility of utilizing the monitored changes in the Mediterranean Sea, sometimes defined as a "reduced scale ocean", for gaining insights into the physical and biological changes that may occur in the larger world ocean systems. Thus, this paper is relevant, not only to countries bordering the Mediterranean Sea, but also to more general concerns about responses of large marine systems to climatic change
Studying the Earth with Geoneutrinos
Geo-neutrinos, electron antineutrinos from natural radioactive decays inside
the Earth, bring to the surface unique information about our planet. The new
techniques in neutrino detection opened a door into a completely new
inter-disciplinary field of Neutrino Geoscience. We give here a broad
geological introduction highlighting the points where the geo-neutrino
measurements can give substantial new insights. The status-of-art of this field
is overviewed, including a description of the latest experimental results from
KamLAND and Borexino experiments and their first geological implications. We
performed a new combined Borexino and KamLAND analysis in terms of the
extraction of the mantle geo-neutrino signal and the limits on the Earth's
radiogenic heat power. The perspectives and the future projects having
geo-neutrinos among their scientific goals are also discussed.Comment: 22 pages, 12 figures, 4 tables, accepted for publication in Advances
in High Energy Physics-Hindawi Publishing Corporatio
Reactor Antineutrinos Signal all over the world
We present an updated estimate of reactor antineutrino signal all over the
world, with particular attention to the sites proposed for existing and future
geo-neutrino experiment. In our calculation we take into account the most
updated data on Thermal Power for each nuclear plant, on reactor antineutrino
spectra and on three neutrino oscillation mechanism.Comment: 4 pages including 1 figur
First Measurement of the He3+He3-->He4+2p Cross Section down to the Lower Edge of the Solar Gamow Peak
We give the LUNA results on the cross section measurement of a key reaction
of the proton-proton chain strongly affecting the calculated neutrino
luminosity from the Sun: He3+He3-->He4+2p. Due to the cosmic ray suppression
provided by the Gran Sasso underground laboratory it has been possible to
measure the cross section down to the lower edge of the solar Gamow peak, i.e.
as low as 16.5 keV centre of mass energy. The data clearly show the cross
section increase due to the electron screening effect but they do not exhibit
any evidence for a narrow resonance suggested to explain the observed solar
neutrino flux.Comment: 5 pages, RevTeX, and 2 figures in PostScript Submitted for
publicatio
Solar neutrino detection in a large volume double-phase liquid argon experiment
Precision measurements of solar neutrinos emitted by specific nuclear
reaction chains in the Sun are of great interest for developing an improved
understanding of star formation and evolution. Given the expected neutrino
fluxes and known detection reactions, such measurements require detectors
capable of collecting neutrino-electron scattering data in exposures on the
order of 1 ktonne yr, with good energy resolution and extremely low background.
Two-phase liquid argon time projection chambers (LAr TPCs) are under
development for direct Dark Matter WIMP searches, which possess very large
sensitive mass, high scintillation light yield, good energy resolution, and
good spatial resolution in all three cartesian directions. While enabling Dark
Matter searches with sensitivity extending to the "neutrino floor" (given by
the rate of nuclear recoil events from solar neutrino coherent scattering),
such detectors could also enable precision measurements of solar neutrino
fluxes using the neutrino-electron elastic scattering events. Modeling results
are presented for the cosmogenic and radiogenic backgrounds affecting solar
neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at
LNGS depth (3,800 meters of water equivalent). The results show that such a
detector could measure the CNO neutrino rate with ~15% precision, and
significantly improve the precision of the 7Be and pep neutrino rates compared
to the currently available results from the Borexino organic liquid
scintillator detector.Comment: 21 pages, 7 figures, 6 table
Recommended from our members
New limits on heavy sterile neutrino mixing in -decay obtained with the Borexino detector
If heavy neutrinos with mass 2 are produced in the
Sun via the decay in a side
branch of pp-chain, they would undergo the observable decay into an electron, a
positron and a light neutrino . In the
present work Borexino data are used to set a bound on the existence of such
decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV 14 MeV to be
respectively. These are tighter limits on the mixing parameters than obtained
in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure
Muon and Cosmogenic Neutron Detection in Borexino
Borexino, a liquid scintillator detector at LNGS, is designed for the
detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear
reactors, and the Earth. The feeble nature of these signals requires a strong
suppression of backgrounds below a few MeV. Very low intrinsic radiogenic
contamination of all detector components needs to be accompanied by the
efficient identification of muons and of muon-induced backgrounds. Muons
produce unstable nuclei by spallation processes along their trajectory through
the detector whose decays can mimic the expected signals; for isotopes with
half-lives longer than a few seconds, the dead time induced by a muon-related
veto becomes unacceptably long, unless its application can be restricted to a
sub-volume along the muon track. Consequently, not only the identification of
muons with very high efficiency but also a precise reconstruction of their
tracks is of primary importance for the physics program of the experiment. The
Borexino inner detector is surrounded by an outer water-Cherenkov detector that
plays a fundamental role in accomplishing this task. The detector design
principles and their implementation are described. The strategies adopted to
identify muons are reviewed and their efficiency is evaluated. The overall muon
veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction
algorithms developed are presented. Their performance is tested against muon
events of known direction such as those from the CNGS neutrino beam, test
tracks available from a dedicated External Muon Tracker and cosmic muons whose
angular distribution reflects the local overburden profile. The achieved
angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending
on the impact parameter of the crossing muon. The methods implemented to
efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file
(defines.tex) with TEX macros. submitted to Journal of Instrumentatio
The Main Results of the Borexino Experiment
The main physical results on the registration of solar neutrinos and the
search for rare processes obtained by the Borexino collaboration to date are
presented.Comment: 8 pages, 8 figgures, To be published as Proceedings of the Third
Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 201
Recommended from our members
New experimental limits on the Pauli forbidden transitions in C nuclei obtained with 485 days Borexino data
The Pauli exclusion principle (PEP) has been tested for nucleons () in
with the Borexino detector.The approach consists of a search for
, , and emitted in a non-Paulian transition of
1- shell nucleons to the filled 1 shell in nuclei. Due to the
extremely low background and the large mass (278 t) of the Borexino detector,
the following most stringent up-to-date experimental bounds on PEP violating
transitions of nucleons have been established:
y, y,
y,
y and y, all at 90% C.L. The corresponding upper
limits on the relative strengths for the searched non-Paulian electromagnetic,
strong and weak transitions have been estimated: , and .Comment: 9 pages, 6 figure
- …
