1,446 research outputs found

    Shocks in relativistic transverse stratified jets, a new paradigm for radio-loud AGN

    Full text link
    The transverse stratification of active galactic nuclei (AGN) jets is suggested by observations and theoretical arguments, as a consequence of intrinsic properties of the central engine (accretion disc + black hole) and external medium. On the other hand, the one-component jet approaches are heavily challenged by the various observed properties of plasmoids in radio jets (knots), often associated with internal shocks. Given that such a transverse stratification plays an important role on the jets acceleration, stability, and interaction with the external medium, it should also induce internal shocks with various strengths and configurations, able to describe the observed knots behaviours. By establishing a relation between the transverse stratification of the jets, the internal shock properties, and the multiple observed AGN jet morphologies and behaviours, our aim is to provide a consistent global scheme of the various AGN jet structures. Working on a large sample of AGN radio jets monitored in very long baseline interferometry (VLBI) by the MOJAVE collaboration, we determined the consistency of a systematic association of the multiple knots with successive re-collimation shocks. We then investigated the re-collimation shock formation and the influence of different transverse stratified structures by parametrically exploring the two relativistic outflow components with the specific relativistic hydrodynamic (SRHD) code AMRVAC. We were able to link the different spectral classes of AGN with specific stratified jet characteristics, in good accordance with their VLBI radio properties and their accretion regimes.Comment: 16 pages, 12 figures, accepted for publication in A&

    Investigation of A1g phonons in YBa2Cu3O7 by means of LAPW atomic-force calculations

    Full text link
    We report first-principles frozen-phonon calculations for the determination of the force-free geometry and the dynamical matrix of the five Raman-active A1g modes in YBa2Cu3O7. To establish the shape of the phonon potentials atomic forces are calculated within the LAPW method. Two different schemes - the local density approximation (LDA) and a generalized gradient approximation (GGA) - are employed for the treatment of electronic exchange and correlation effects. We find that in the case of LDA the resulting phonon frequencies show a deviation from experimental values of approximately -10%. Invoking GGA the frequency values are significantly improved and also the eigenvectors are in very good agreement with experimental findings.Comment: 15 page

    SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to allow for a wide field of view with a light-weight camera, e.g. using GAPDs or multi-anode photomultipliers. One objective of the GATE (Gamma-ray Telescope Elements) programme is to build one of the first Schwarzschild-Couder prototypes and to evaluate its performance. The construction of the SST-GATE prototype on the campus of the Paris Observatory in Meudon is under way. We report on the current status of the project and provide details of the opto-mechanical design of the prototype, the development of its control software, and simulations of its expected performance.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Studies of aging and HV break down problems during development and operation of MSGC and GEM detectors for the Inner Tracking System of HERA-B

    Get PDF
    The results of five years of development of the inner tracking system of the HERA-B experiment and first experience from the data taking period of the year 2000 are reported. The system contains 184 chambers, covering a sensitive area of about 20 * 20 cm2 each. The detector is based on microstrip gas counters (MSGCs) with diamond like coated (DLC) glass wafers and gas electron multipliers (GEMs). The main problems in the development phase were gas discharges in intense hadron beams and aging in a high radiation dose environment. The observation of gas discharges which damage the electrode structure of the MSGC led to the addition of the GEM as a first amplification step. Spurious sparking at the GEM cannot be avoided completely. It does not affect the GEM itself but can produce secondary damage of the MSGC if the electric field between the GEM and the MSGC is above a threshold depending on operation conditions. We observed that aging does not only depend on the dose but also on the spot size of the irradiated area. Ar-DME mixtures had to be abandoned whereas a mixture of 70% Ar and 30% CO2 showed no serious aging effects up to about 40 mC/cm deposited charge on the anodes. X-ray measurements indicate that the DLC of the MSGC is deteriorated by the gas amplification process. As a consequence, long term gain variations are expected. The Inner Tracker has successfully participated in the data taking at HERA-B during summer 2000.Comment: 29 pages, 22 figure

    Spectral properties of the t-J model in the presence of hole-phonon interaction

    Full text link
    We examine the effects of electron-phonon interaction on the dynamics of the charge carriers doped in two-dimensional (2D) Heisenberg antiferromagnet. The tt-JJ model Hamiltonian with a Fr\"ohlich term which couples the holes to a dispersionless (optical) phonon mode is considered for low doping concentration. The evolution of the spectral density function, the density of states, and the momentum distribution function of the holes with an increase of the hole-phonon coupling constant gg is studied numerically. As the coupling to a phonon mode increases the quasiparticle spectral weight decreases and a ``phonon satellite'' feature close to the quasi-particle peak becomes more pronounced. Furthermore, strong electron-phonon coupling smears the multi-magnon resonances (``string states'') in the incoherent part of the spectral function. The jump in the momentum distribution function at the Fermi surface is reduced without changing the hole pocket volume, thereby providing a numerical verification of Luttinger theorem for this strongly interacting system. The vertex corrections due to electron- phonon interaction are negligible in spite of the fact that the ratio of the phonon frequency to the effective bandwidth is not small.Comment: REVTeX, 20 pages, 9 figures, to be published in Phys. Rev. B (Nov. 1, 1996

    Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) will be an instrument covering a wide energy range in very-high-energy (VHE) gamma rays. CTA will include several types of telescopes, in order to optimize the performance over the whole energy range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets (including many different possible CTA layouts as sub-sets) and smaller-scale simulations dedicated to individual aspects were carried out and are on-going. We summarize results of the prior round of large-scale simulations, show where the design has now evolved beyond the conservative assumptions of the prior round and present first results from the on-going new round of MC simulations.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Cosmological constraints combining H(z), CMB shift and SNIa observational data

    Full text link
    Recently H(z) data obtained from differential ages of galaxies have been proposed as a new geometrical probe of dark energy. In this paper we use those data, combined with other background tests (CMB shift and SNIa data), to constrain a set of general relativistic dark energy models together with some other models motivated by extra dimensions. Our analysis rests mostly on Bayesian statistics, and we conclude that LCDM is at least substantially favoured, and that braneworld models are less favoured than general relativistic ones.Comment: 17 pages, 11 figures; improved discussion, new figures, updated to match published versio

    An upper limit on the electron-neutrino flux from the HiRes detector

    Full text link
    Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultrahigh energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant decrease in the cross sections for bremsstrahlung and pair production, allowing charged-current electron-neutrino-induced showers occurring deep in the Earth's crust to be detectable as they exit the Earth into the atmosphere. A search for upward-going neutrino-induced showers in the HiRes-II monocular dataset has yielded a null result. From an LPM calculation of the energy spectrum of charged particles as a function of primary energy and depth for electron-induced showers in rock, we calculate the shape of the resulting profile of these showers in air. We describe a full detector Monte Carlo simulation to determine the detector response to upward-going electron-neutrino-induced cascades and present an upper limit on the flux of electron-neutrinos.Comment: 13 pages, 3 figures. submitted to Astrophysical Journa

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures
    corecore