1,313 research outputs found
Structure and activity of the Streptococcus pyogenes family GH1 6-phospho β-glycosidase, Spy1599
The group A streptococcus Streptococcus pyogenes is the causative agent of a wide spectrum of invasive infections, including necrotizing fasciitis, scarlet fever and toxic shock syndrome. In the context of its carbohydrate chemistry, it is interesting that S. pyogenes (in this work strain M1 GAS SF370) displays a spectrum of oligosaccharide-processing enzymes that are located in close proximity on the genome but that the in vivo function of these proteins remains unknown. These proteins include different sugar transporters (SPy1593 and SPy1595), both GH125 -1,6- and GH38 -1,3-mannosidases (SPy1603 and SPy1604), a GH84 -hexosaminidase (SPy1600) and a putative GH2 -galactosidase (SPy1586), as well as SPy1599, a family GH1 `putative -glucosidase'. Here, the solution of the three-dimensional structure of SPy1599 in a number of crystal forms complicated by unusual crystallographic twinning is reported. The structure is a classical (/)8-barrel, consistent with CAZy family GH1 and other members of the GH-A clan. SPy1599 has been annotated in sequence depositions as a -glucosidase (EC 3.2.1.21), but no such activity could be found; instead, three-dimensional structural overlaps with other enzymes of known function suggested that SPy1599 contains a phosphate-binding pocket in the active site and has possible 6-phospho--glycosidase activity. Subsequent kinetic analysis indeed showed that SPy1599 has 6-phospho--glucosidase (EC 3.2.1.86) activity. These data suggest that SPy1599 is involved in the intracellular degradation of 6-phosphoglycosides, which are likely to originate from import through one of the organism's many phosphoenolpyruvate phosphotransfer systems (PEP-PTSs)
Exogenous expression of a dominant negative RORa1 vector in muscle cells impairs differentiation: RORa1 directly interacts with p300 and MyoD
ROR/RZR is an orphan nuclear receptor that has no known ligand in the 'classical sense'. In the present study we demonstrate that RORalpha is constitutively expressed during the differentiation of proliferating myoblasts to post-mitotic multinucleated myotubes, that have acquired a contractile phenotype. Exogenous expression of dominant negative RORalpha1DeltaE mRNA in myogenic cells significantly reduces the endogenous expression of RORalpha1 mRNA, represses the accumu-lation and delays the activation of mRNAs encoding MyoD and myogenin [the muscle-specific basic helix-loop-helix (bHLH) proteins] and p21(Waf- 1/Cip-1) (a cdk inhibitor). Immunohistochemistry demonstrates that morpho-logical differentiation is delayed in cells expressing the RORDeltaE transcript. Furthermore, the size and development of mutlinucleated myotubes is impaired. The E region of RORalpha1 interacts with p300, a cofactor that functions as a coactivator in nuclear receptor and MyoD-mediated transactivation. Consistent with the functional role of RORalpha1 in myogenesis, we observed that RORalpha1 directly interacts with the bHLH protein MyoD. This interaction was mediated by the N-terminal activation domain of the bHLH protein, MyoD, and the RORalpha1 DNA binding domain/C region. Furthermore, we demonstrated that p300, RORalpha1 and MyoD interact in a non- competitive manner. In conclusion, this study provides evidence for a biological role and positive influence of RORalpha1 in the cascade of events involved in the activation of myogenic-specific markers and cell cycle regulators and suggests that crosstalk between theretinoid- relatedorphan (ROR) nuclear receptors and the myogenic bHLH proteins has functional consequences for differentiation
Recommended from our members
Computational analysis of the LRRK2 interactome
LRRK2 was identified in 2004 as the causative protein product of the Parkinson’s disease locus designated PARK8. In the decade since then, genetic studies have revealed at least 6 dominant mutations in LRRK2 linked to Parkinson’s disease, alongside one associated with cancer. It is now well established that coding changes in LRRK2 are one of the most common causes of Parkinson’s. Genome-wide association studies (GWAs) have, more recently, reported single nucleotide polymorphisms (SNPs) around the LRRK2 locus to be associated with risk of developing sporadic Parkinson’s disease and inflammatory bowel disorder. The functional research that has followed these genetic breakthroughs has generated an extensive literature regarding LRRK2 pathophysiology; however, there is still no consensus as to the biological function of LRRK2. To provide insight into the aspects of cell biology that are consistently related to LRRK2 activity, we analysed the plethora of candidate LRRK2 interactors available through the BioGRID and IntAct data repositories. We then performed GO terms enrichment for the LRRK2 interactome. We found that, in two different enrichment portals, the LRRK2 interactome was associated with terms referring to transport, cellular organization, vesicles and the cytoskeleton. We also verified that 21 of the LRRK2 interactors are genetically linked to risk for Parkin- son’s disease or inflammatory bowel disorder. The implications of these findings are discussed, with particular regard to potential novel areas of investigation
Digital transformation in materials science: A paradigm change in material's development
The ongoing digitalization is rapidly changing and will further revolutionize all parts of life. This statement is currently omnipresent in the media as well as in the scientific community; however, the exact consequences of the proceeding digitalization for the field of materials science in general and the way research will be performed in the future are still unclear. There are first promising examples featuring the potential to change discovery and development approaches toward new materials. Nevertheless, a wide range of open questions have to be solved in order to enable the so‐called digital‐supported material research. The current state‐of‐the‐art, the present and future challenges, as well as the resulting perspectives for materials science are described.The ongoing expansion of digitalization approaches influences the material research significantly. The complete workflow of the development of novel materials, from synthesis, over characterization, to fabrication will change within the coming years to a more automatic, data‐driven, and robot‐based approach. The current status is summarized and advantages, challenges, and future perspectives discussed
Umsetzung der Anforderungen der EU an registrierte Betriebe ab 2006 hinsichtlich Umsetzbarkeit und Verbraucherschutz
Umsetzung der Anforderungen der EU an registrierte Betriebe ab 2006 hinsichtlich Umsetzbarkeit und Verbraucherschut
Automated Polymer Purification Using Dialysis
The automated dialysis of polymers in synthetic robots is described as a first approach for the purification of polymers using an automated protocol. For this purpose, a dialysis apparatus was installed within a synthesis robot. Therein, the polymer solution could be transferred automatically into the dialysis tube. Afterwards, a permanent running dialysis could be started, enabling the removal of residual monomer. Purification efficiency was studied using chromatography and NMR spectroscopy, showing that the automated dialysis requires less solvent and is faster compared to the classical manual approach
A novel Netrin-1-sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.American Heart Association (Fellowship 0615692T)National Institutes of Health (U.S.) (Grant GM68678
- …
