311 research outputs found
Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si
The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated
Kinetics of coherent order-disorder transition in
Within a phase field approach which takes the strain-induced elasticity into
account, the kinetics of the coherent order-disorder transition is investigated
for the specific case of alloy. It is shown that a microstructure
with cubic precipitates appears as a transient state during the
decomposition of a homogeneous disordered solid solution into a microstructure
with tetragonal precipitates embedded into a disordered matrix. At
low enough temperature, favored by a weak internal stress, only
precipitates grow in the transient microstructure preceding nucleation of the
precipitates that occurs exclusively at the interface of the solid
solution with the precipitates. Analysis of microstructures at
nanoscopic scale shows a characteristic rod shape for the
precipitates due to the combination of their tetragonal symmetry and their
large internal stress.Comment: 2 postscript figures and 1 JPG pag
Subcentral Governmental Investment Incentives: Assessing Their Lawfulness Under the GATT and the SCM Agreement
Preliminary Thoughts on Some Unresolved Questions Involving the Law of Anticipatory Self-Defense
- …
