273 research outputs found

    IDCS J1426+3508: Discovery of a Massive, IR-Selected Galaxy Cluster at z = 1.75

    Full text link
    We report the discovery of an IR-selected massive galaxy cluster in the IRAC Distant Cluster Survey (IDCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm IDCS J1426+3508 at z=1.75. Moreover, the cluster is detected in archival Chandra data as an extended X-ray source, comprising 54 counts after the removal of point sources. We calculate an X-ray luminosity of L{0.5-2 keV} = (5.5 +/- 1.2) X 1e44 ergs/s within r = 60 arcsec (~1 Mpc diameter), which implies M_{200,L_x} = (5.6 +/- 1.6) X 1e14 Msun. IDCS J1426+3508 appears to be an exceptionally massive cluster for its redshift.Comment: Accepted for publication in The Astrophysical Journa

    IDCS J1426.5+3508: The Most Massive Galaxy Cluster at z>1.5z > 1.5

    Full text link
    We present a deep (100 ks) Chandra observation of IDCS J1426.5+3508, a spectroscopically confirmed, infrared-selected galaxy cluster at z=1.75z = 1.75. This cluster is the most massive galaxy cluster currently known at z>1.5z > 1.5, based on existing Sunyaev-Zel'dovich (SZ) and gravitational lensing detections. We confirm this high mass via a variety of X-ray scaling relations, including TXT_X-M, fgf_g-M, YXY_X-M and LXL_X-M, finding a tight distribution of masses from these different methods, spanning M500_{500} = 2.3-3.3 ×1014\times 10^{14} M_{\odot}, with the low-scatter YXY_X-based mass M500,YX=2.60.5+1.5×1014M_{500,Y_X} = 2.6^{+1.5}_{-0.5} \times 10^{14} M_\odot. IDCS J1426.5+3508 is currently the only cluster at z>1.5z > 1.5 for which X-ray, SZ and gravitational lensing mass estimates exist, and these are in remarkably good agreement. We find a relatively tight distribution of the gas-to-total mass ratio, employing total masses from all of the aforementioned indicators, with values ranging from fgas,500f_{gas,500} = 0.087-0.12. We do not detect metals in the intracluster medium (ICM) of this system, placing a 2σ\sigma upper limit of Z(r<R500)<0.18ZZ(r < R_{500}) < 0.18 Z_{\odot}. This upper limit on the metallicity suggests that this system may still be in the process of enriching its ICM. The cluster has a dense, low-entropy core, offset by \sim30 kpc from the X-ray centroid, which makes it one of the few "cool core" clusters discovered at z>1z > 1, and the first known cool core cluster at z>1.2z > 1.2. The offset of this core from the large-scale centroid suggests that this cluster has had a relatively recent (\lesssim500 Myr) merger/interaction with another massive system.Comment: Minor changes to match accepted version, results unchanged; ApJ in pres

    The Dust Attenuation Curve versus Stellar Mass for Emission Line Galaxies at z ~ 2

    Full text link
    We derive the mean wavelength dependence of stellar attenuation in a sample of 239 high redshift (1.90 < z < 2.35) galaxies selected via Hubble Space Telescope (HST) WFC3 IR grism observations of their rest-frame optical emission lines. Our analysis indicates that the average reddening law follows a form similar to that derived by Calzetti et al. for local starburst galaxies. However, over the mass range 7.2 < log M/Msolar < 10.2, the slope of the attenuation law in the UV is shallower than that seen locally, and the UV slope steepens as the mass increases. These trends are in qualitative agreement with Kriek & Conroy, who found that the wavelength dependence of attenuation varies with galaxy spectral type. However, we find no evidence of an extinction "bump" at 2175 A in any of the three stellar mass bins, or in the sample as a whole. We quantify the relation between the attenuation curve and stellar mass and discuss its implications.Comment: Accepted for publication in Ap

    The Massive Distant Clusters of WISE Survey: The First Distant Galaxy Cluster Discovered by WISE

    Get PDF
    We present spectroscopic confirmation of a z=0.99 galaxy cluster discovered using data from the Wide-field Infrared Survey Explorer (WISE). This is the first z~1 cluster candidate from the Massive Distant Clusters of WISE Survey (MaDCoWS) to be confirmed. It was selected as an overdensity of probable z>~1 sources using a combination of WISE and SDSS-DR8 photometric catalogs. Deeper follow-up imaging data from Subaru and WIYN reveal the cluster to be a rich system of galaxies, and multi-object spectroscopic observations from Keck confirm five cluster members at z=0.99. The detection and confirmation of this cluster represents a first step towards constructing a uniformly-selected sample of distant, high-mass galaxy clusters over the full extragalactic sky using WISE data.Comment: 6 pages, 5 figures, ApJL Accepte

    Star Formation and AGN Activity in Galaxy Clusters from z=12z=1-2: a Multi-wavelength Analysis Featuring HerschelHerschel/PACS

    Full text link
    We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive (1014M\gtrsim10^{14}\,\rm{M_{\odot}}) galaxy clusters at 1<z<1.751<z<1.75. Using new, deep HerschelHerschel/PACS imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at z1.4z\gtrsim1.4 is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores (r<0.5r<0.5\,Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by z1z\sim1. Enhanced SFRs are found in lower mass (10.1<logM/M<10.810.1< \log \rm{M_{\star}}/\rm{M_{\odot}}<10.8) cluster galaxies. We find significant variation in SF from cluster-to-cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGN in clusters from z=0.52z=0.5-2, finding an excess AGN fraction at z1z\gtrsim1, suggesting environmental triggering of AGN during this epoch. We argue that our results - a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGN - are consistent with a co-evolution between SF and AGN in clusters and an increased merger rate in massive haloes at high redshift.Comment: 26 pages, 14 figures, 6 tables with appendix, accepted for publication in the Astrophysical Journa

    Unbiased Cosmological Parameter Estimation from Emission Line Surveys with Interlopers

    Full text link
    The galaxy catalogs generated from low-resolution emission line surveys often contain both foreground and background interlopers due to line misidentification, which can bias the cosmological parameter estimation. In this paper, we present a method for correcting the interloper bias by using the joint-analysis of auto- and cross-power spectra of the main and the interloper samples. In particular, we can measure the interloper fractions from the cross-correlation between the interlopers and survey galaxies, because the true cross-correlation must be negligibly small. The estimated interloper fractions, in turn, remove the interloper bias in the cosmological parameter estimation. For example, in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) low-redshift (z<0.5z<0.5) [O II] λ3727\lambda3727{\AA} emitters contaminate high-redshift (1.9<z<3.51.9<z<3.5) Lyman-α\alpha line emitters. We demonstrate that the joint-analysis method yields a high signal-to-noise ratio measurement of the interloper fractions while only marginally increasing the uncertainties in the cosmological parameters relative to the case without interlopers. We also show the same is true for the high-latitude spectroscopic survey of Wide-Field Infrared Survey Telescope (WFIRST) mission where contamination occurs between the Balmer-α\alpha line emitters at lower redshifts (1.1<z<1.91.1<z<1.9) and Oxygen ([O III] λ5007\lambda5007{\AA}) line emitters at higher redshifts (1.7<z<2.81.7<z<2.8).Comment: 36 pages, 26 figure
    corecore