740 research outputs found

    Weyl's law and quantum ergodicity for maps with divided phase space

    Full text link
    For a general class of unitary quantum maps, whose underlying classical phase space is divided into several invariant domains of positive measure, we establish analogues of Weyl's law for the distribution of eigenphases. If the map has one ergodic component, and is periodic on the remaining domains, we prove the Schnirelman-Zelditch-Colin de Verdiere Theorem on the equidistribution of eigenfunctions with respect to the ergodic component of the classical map (quantum ergodicity). We apply our main theorems to quantised linked twist maps on the torus. In the Appendix, S. Zelditch connects these studies to some earlier results on `pimpled spheres' in the setting of Riemannian manifolds. The common feature is a divided phase space with a periodic component.Comment: Colour figures. Black & white figures available at http://www2.maths.bris.ac.uk/~majm. Appendix by Steve Zelditc

    Quantum ergodicity for Pauli Hamiltonians with spin 1/2

    Full text link
    Quantum ergodicity, which expresses the semiclassical convergence of almost all expectation values of observables in eigenstates of the quantum Hamiltonian to the corresponding classical microcanonical average, is proven for non-relativistic quantum particles with spin 1/2. It is shown that quantum ergodicity holds, if a suitable combination of the classical translational dynamics and the spin dynamics along the trajectories of the translational motion is ergodic.Comment: 20 pages, no figure

    Orbit bifurcations and the scarring of wavefunctions

    Full text link
    We extend the semiclassical theory of scarring of quantum eigenfunctions psi_{n}(q) by classical periodic orbits to include situations where these orbits undergo generic bifurcations. It is shown that |psi_{n}(q)|^{2}, averaged locally with respect to position q and the energy spectrum E_{n}, has structure around bifurcating periodic orbits with an amplitude and length-scale whose hbar-dependence is determined by the bifurcation in question. Specifically, the amplitude scales as hbar^{alpha} and the length-scale as hbar^{w}, and values of the scar exponents, alpha and w, are computed for a variety of generic bifurcations. In each case, the scars are semiclassically wider than those associated with isolated and unstable periodic orbits; moreover, their amplitude is at least as large, and in most cases larger. In this sense, bifurcations may be said to give rise to superscars. The competition between the contributions from different bifurcations to determine the moments of the averaged eigenfunction amplitude is analysed. We argue that there is a resulting universal hbar-scaling in the semiclassical asymptotics of these moments for irregular states in systems with a mixed phase-space dynamics. Finally, a number of these predictions are illustrated by numerical computations for a family of perturbed cat maps.Comment: 24 pages, 6 Postscript figures, corrected some typo

    Amplitude distribution of eigenfunctions in mixed systems

    Full text link
    We study the amplitude distribution of irregular eigenfunctions in systems with mixed classical phase space. For an appropriately restricted random wave model a theoretical prediction for the amplitude distribution is derived and good agreement with numerical computations for the family of limacon billiards is found. The natural extension of our result to more general systems, e.g. with a potential, is also discussed.Comment: 13 pages, 3 figures. Some of the pictures are included in low resolution only. For a version with pictures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ or http://www.maths.bris.ac.uk/~maab

    Semiclassical measures and the Schroedinger flow on Riemannian manifolds

    Full text link
    In this article we study limits of Wigner distributions (the so-called semiclassical measures) corresponding to sequences of solutions to the semiclassical Schroedinger equation at times scales αh\alpha_{h} tending to infinity as the semiclassical parameter hh tends to zero (when αh=1/h\alpha _{h}=1/h this is equivalent to consider solutions to the non-semiclassical Schreodinger equation). Some general results are presented, among which a weak version of Egorov's theorem that holds in this setting. A complete characterization is given for the Euclidean space and Zoll manifolds (that is, manifolds with periodic geodesic flow) via averaging formulae relating the semiclassical measures corresponding to the evolution to those of the initial states. The case of the flat torus is also addressed; it is shown that non-classical behavior may occur when energy concentrates on resonant frequencies. Moreover, we present an example showing that the semiclassical measures associated to a sequence of states no longer determines those of their evolutions. Finally, some results concerning the equation with a potential are presented.Comment: 18 pages; Theorems 1,2 extendend to deal with arbitrary time-scales; references adde

    High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows

    Full text link
    We relate high-energy limits of Laplace-type and Dirac-type operators to frame flows on the corresponding manifolds, and show that the ergodicity of frame flows implies quantum ergodicity in an appropriate sense for those operators. Observables for the corresponding quantum systems are matrix-valued pseudodifferential operators and therefore the system remains non-commutative in the high-energy limit. We discuss to what extent the space of stationary high-energy states behaves classically.Comment: 26 pages, latex2

    Crystal properties of eigenstates for quantum cat maps

    Full text link
    Using the Bargmann-Husimi representation of quantum mechanics on a torus phase space, we study analytically eigenstates of quantized cat maps. The linearity of these maps implies a close relationship between classically invariant sublattices on the one hand, and the patterns (or `constellations') of Husimi zeros of certain quantum eigenstates on the other hand. For these states, the zero patterns are crystals on the torus. As a consequence, we can compute explicit families of eigenstates for which the zero patterns become uniformly distributed on the torus phase space in the limit 0\hbar\to 0. This result constitutes a first rigorous example of semi-classical equidistribution for Husimi zeros of eigenstates in quantized one-dimensional chaotic systems.Comment: 43 pages, LaTeX, including 7 eps figures Some amendments were made in order to clarify the text, mainly in the 4 first sections. Figures are unchanged. To be published in: Nonlinearit

    Are geometric morphometric analyses replicable? Evaluating landmark measurement error and its impact on extant and fossil Microtus classification.

    Get PDF
    Geometric morphometric analyses are frequently employed to quantify biological shape and shape variation. Despite the popularity of this technique, quantification of measurement error in geometric morphometric datasets and its impact on statistical results is seldom assessed in the literature. Here, we evaluate error on 2D landmark coordinate configurations of the lower first molar of five North American Microtus (vole) species. We acquired data from the same specimens several times to quantify error from four data acquisition sources: specimen presentation, imaging devices, interobserver variation, and intraobserver variation. We then evaluated the impact of those errors on linear discriminant analysis-based classifications of the five species using recent specimens of known species affinity and fossil specimens of unknown species affinity. Results indicate that data acquisition error can be substantial, sometimes explaining >30% of the total variation among datasets. Comparisons of datasets digitized by different individuals exhibit the greatest discrepancies in landmark precision, and comparison of datasets photographed from different presentation angles yields the greatest discrepancies in species classification results. All error sources impact statistical classification to some extent. For example, no two landmark dataset replicates exhibit the same predicted group memberships of recent or fossil specimens. Our findings emphasize the need to mitigate error as much as possible during geometric morphometric data collection. Though the impact of measurement error on statistical fidelity is likely analysis-specific, we recommend that all geometric morphometric studies standardize specimen imaging equipment, specimen presentations (if analyses are 2D), and landmark digitizers to reduce error and subsequent analytical misinterpretations

    Can One Hear the Shape of a Graph?

    Full text link
    We show that the spectrum of the Schrodinger operator on a finite, metric graph determines uniquely the connectivity matrix and the bond lengths, provided that the lengths are non-commensurate and the connectivity is simple (no parallel bonds between vertices and no loops connecting a vertex to itself). That is, one can hear the shape of the graph! We also consider a related inversion problem: A compact graph can be converted into a scattering system by attaching to its vertices leads to infinity. We show that the scattering phase determines uniquely the compact part of the graph, under similar conditions as above.Comment: 9 pages, 1 figur
    corecore